1
|
Xiao D, Liu S, Xiang M. Unveiling the potential: implications of successful somatic cell-to-ganglion organoid reprogramming. Curr Opin Genet Dev 2024; 89:102227. [PMID: 39586653 DOI: 10.1016/j.gde.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Organoids have a wide range of potential applications in areas such as organ development, precision medicine, regenerative medicine, drug screening, disease modeling, and gene editing. Currently, most organoids are generated through three-dimensional (3D) in vitro culture of adult stem cells or pluripotent stem cells. However, this method of generating organoids still has several limitations and challenges, including complex manipulations, costly culturing materials, extended time requirements, and certain heterogeneity. Recently, we have found that fibroblasts, when overexpressing several key regulatory transcription factors, are able to directly and rapidly generate two types of ganglion organoids: sensory ganglion (SG) and autonomic ganglion (AG) organoids. They have structures and electrophysiological properties similar to those of endogenous organs in the body. Here, we provide a brief overview of organoid development, focusing on direct reprogramming of SG and AG organoids and their transplantation and regeneration. Finally, the advantages and prospects of direct reprogramming of organoids are discussed.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sxen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Zhang L, Chen Y, Jiang Q, Song W, Zhang L. Therapeutic potential of selective histone deacetylase 3 inhibition. Eur J Med Chem 2018; 162:534-542. [PMID: 30472601 DOI: 10.1016/j.ejmech.2018.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are closely related to the occurrence and development of a variety of diseases, such as tumor, inflammation, diabetes mellitus, cardiovascular and neurodegenerative diseases. Inhibition of HDACs by developing HDAC inhibitors has achieved significant progress in the treatment of diseases caused by epigenetic abnormalities, and especially in the cancer therapy. Isoform selective HDAC inhibitors are emphasized to be disease specific and have less off-target effects and better safety performances. HDAC3 has been illustrated to play specific role in the development of several diseases, and the discovery of HDAC3 selective inhibitors has exhibited potential in the targeted disease treatment. Herein, we summarize the current knowledge about the prospects of selective inhibition of HDAC3 for the drug development.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qixiao Jiang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 2017; 12:e0189109. [PMID: 29236724 PMCID: PMC5728518 DOI: 10.1371/journal.pone.0189109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Collapse
|
5
|
A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington's disease mice. Sci Rep 2017; 7:6082. [PMID: 28729730 PMCID: PMC5519595 DOI: 10.1038/s41598-017-05125-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/24/2017] [Indexed: 12/03/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder whose major symptoms include progressive motor and cognitive dysfunction. Cognitive decline is a critical quality of life concern for HD patients and families. The enzyme histone deacetylase 3 (HDAC3) appears to be important in HD pathology by negatively regulating genes involved in cognitive functions. Furthermore, HDAC3 has been implicated in the aberrant transcriptional patterns that help cause disease symptoms in HD mice. HDAC3 also helps fuel CAG repeat expansions in human cells, suggesting that HDAC3 may power striatal expansions in the HTT gene thought to drive disease progression. This multifaceted role suggests that early HDAC3 inhibition offers an attractive mechanism to prevent HD cognitive decline and to suppress striatal expansions. This hypothesis was investigated by treating HdhQ111 knock-in mice with the HDAC3-selective inhibitor RGFP966. Chronic early treatment prevented long-term memory impairments and normalized specific memory-related gene expression in hippocampus. Additionally, RGFP966 prevented corticostriatal-dependent motor learning deficits, significantly suppressed striatal CAG repeat expansions, partially rescued striatal protein marker expression and reduced accumulation of mutant huntingtin oligomeric forms. These novel results highlight RGFP966 as an appealing multiple-benefit therapy in HD that concurrently prevents cognitive decline and suppresses striatal CAG repeat expansions.
Collapse
|
6
|
Paulsen JS, Miller AC, Hayes T, Shaw E. Cognitive and behavioral changes in Huntington disease before diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:69-91. [PMID: 28947127 DOI: 10.1016/b978-0-12-801893-4.00006-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phenotypic manifestations of Huntington disease (HD) can be detected at least 15 years prior to the time when a motor diagnosis is given. Advances in clinical care and future research will require consistent use of HD definitions and HD premanifest (prodromal) stages being used across clinics, sites, and countries. Cognitive and behavioral (psychiatric) changes in HD are summarized and implications for ongoing advancement in our knowledge of prodromal HD are suggested. The earliest detected cognitive changes are observed in the Symbol Digit Modalities Test, Stroop Interference, Stroop Color and Word Test-interference condition, and Trail Making Test. Cognitive changes in the middle and near motor diagnostic stages of prodromal HD involve nearly every cognitive test administered and the greatest changes over time (i.e., slopes) are found in those prodromal HD participants who are nearest to motor diagnosis. Psychiatric changes demonstrate significant worsening over time and remain elevated compared with healthy controls throughout the prodromal disease course. Psychiatric and behavior changes in prodromal HD are much lower than that obtained using cognitive assessment, although the psychiatric and behavioral changes represent symptoms most debilitating to independent capacity and wellness.
Collapse
Affiliation(s)
- Jane S Paulsen
- Departments of Psychiatry, Neurology and Psychology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | - Amanda C Miller
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Terry Hayes
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Emily Shaw
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
7
|
Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, Lucio Boschen S, Lima MM, Vital MA. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res 2014; 274:390-9. [DOI: 10.1016/j.bbr.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022]
|
8
|
Paulsen JS, Long JD. Onset of Huntington's disease: can it be purely cognitive? Mov Disord 2014; 29:1342-50. [PMID: 25142616 DOI: 10.1002/mds.25997] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/16/2023] Open
Abstract
Knowledge of the cognitive manifestation of Huntington's disease has burgeoned over the past two decades. Many studies from independent datasets have shown that cognitive impairment is evident before motor diagnosis, and annual cognitive decline is a robust marker of disease progression. Additionally, cognition is a critical concern to patients and families and is associated with meaningful outcomes, including functional capacity, driving, loss of accustomed work, and quality of life. In the past few years, Huntington's disease animal models of cognition have increased, preparing for preclinical experimental therapeutics with cognitive endpoints. A longitudinal analysis of cognitive variables was conducted with 559 gene-positive cases and 233 controls showing no signs of motor abnormalities over approximately a 3-year period. Results show statistically significant differences in rate of annual change for some cognitive variables, such that the cases group had worsening performance over time. These findings show that cognitive deterioration can be seen in persons with the Huntington's disease gene expansion with no overt motor signs or symptoms, suggesting that cognitive onset of Huntington's disease may precede motor.
Collapse
Affiliation(s)
- Jane S Paulsen
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Department of Psychology, The University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
9
|
SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats. Int J Neuropsychopharmacol 2014; 17:1295-306. [PMID: 24661728 DOI: 10.1017/s1461145714000236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease has traditionally been viewed as a motor disorder caused by the loss of dopamine (DA) neurons. However, emotional and cognitive syndromes can precede the onset of the motor deficits and provide an opportunity for therapeutic intervention. Potassium channels have recently emerged as potential new targets in the treatment of Parkinson's disease. The selective blockade of small conductance calcium-activated K+ channels (SK channels) by apamin is known to increase burst firing in midbrain DA neurons and therefore DA release. We thus investigated the effects of systemic administration of apamin on the motor, cognitive deficits and anxiety present after bilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesions in rats. Apamin administration (0.1 or 0.3 mg/kg i.p.) counteracted the depression, anxiety-like behaviors evaluated on sucrose consumption and in the elevated plus maze, social recognition and spatial memory deficits produced by partial 6-OHDA lesions. Apamin also reduced asymmetric motor deficits on circling behavior and postural adjustments in the unilateral extensive 6-OHDA model. The partial 6-OHDA lesions (56% striatal DA depletion) produced 20% decrease of iodinated apamin binding sites in the substantia nigra pars compacta in correlation with the loss of tyrosine hydroxylase positive cells, without modifying apamin binding in brain regions receiving DAergic innervation. Striatal extracellular levels of DA, not detectable after 6-OHDA lesions, were enhanced by apamin treatment as measured by in vivo microdialysis. These results indicate that blocking SK channels may reinstate minimal DA activity in the striatum to alleviate the non-motor symptoms induced by partial striatal DA lesions.
Collapse
|
10
|
Santos KWD, Fraga BFD, Cardoso MCDAF. Dysfunctions of the stomatognathic system and vocal aspects in Fahr disease: case report. Codas 2014; 26:164-7. [DOI: 10.1590/2317-1782/2014498in] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to report the case of a patient with Fahr's Disease in order to describe the main stomatognathic and vocal changes that can be found in individuals with this disease. In order to establish the diagnosis, an assessment of the conditions of orofacial motor system and speech production, as well the efficiency of swallowing, was realized. Based on these assessments, there were difficulties in coordinating and sustaining muscle during speech and presence of oropharyngeal dysphagia. Speech disorders found in Fahr's disease manifest themselves in complex and cover various aspects of phonological knowledge and the diseases that affect the basal ganglia have similar frames of speech-language disorders of the stomatognathic system, being able to present a picture of dysarthria.
Collapse
|