1
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024; 35:1639-1686. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
2
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
3
|
Group II Metabotropic Glutamate Receptors Reduce Apoptosis and Regulate BDNF and GDNF Levels in Hypoxic-Ischemic Injury in Neonatal Rats. Int J Mol Sci 2022; 23:ijms23137000. [PMID: 35806000 PMCID: PMC9266366 DOI: 10.3390/ijms23137000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Birth asphyxia causes brain injury in neonates, but a fully successful treatment has yet to be developed. This study aimed to investigate the effect of group II mGlu receptors activation after experimental birth asphyxia (hypoxia-ischemia) on the expression of factors involved in apoptosis and neuroprotective neurotrophins. Hypoxia-ischemia (HI) on 7-day-old rats was used as an experimental model. The effects of intraperitoneal application of mGluR2 agonist LY379268 (5 mg/kg) and the specific mGluR3 agonist NAAG (5 mg/kg) (1 h or 6 h after HI) on apoptotic processes and initiation of the neuroprotective mechanism were investigated. LY379268 and NAAG applied shortly after HI prevented brain damage and significantly decreased pro-apoptotic Bax and HtrA2/Omi expression, increasing expression of anti-apoptotic Bcl-2. NAAG or LY379268 applied at both times also decreased HIF-1α formation. HI caused a significant decrease in BDNF concentration, which was restored after LY379268 or NAAG administration. HI-induced increase in GDNF concentration was decreased after administration of LY379268 or NAAG. Our results show that activation of mGluR2/3 receptors shortly after HI prevents brain damage by the inhibition of excessive glutamate release and apoptotic damage decrease. mGluR2 and mGluR3 agonists produced comparable results, indicating that both receptors may be a potential target for early treatment in neonatal HI.
Collapse
|
4
|
Kim E, Anguluan E, Kum J, Sanchez-Casanova J, Park TY, Kim JG, Kim H. Wearable Transcranial Ultrasound System for Remote Stimulation of Freely Moving Animal. IEEE Trans Biomed Eng 2021; 68:2195-2202. [PMID: 33186099 DOI: 10.1109/tbme.2020.3038018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) has drawn considerable attention in the neuroscience field as a noninvasive approach to modulate brain circuits. However, the conventional approach requires the use of anesthetized or immobilized animal models, which places considerable restrictions on behavior and affects treatment. Thus, this work presents a wireless, wearable system to achieve ultrasound brain stimulation in freely behaving animals. METHODS The wearable tFUS system was developed based on a microcontroller and amplifier circuit. Brain activity induced by tFUS was monitored through cerebral hemodynamic changes using near-infrared spectroscopy. The system was also applied to stroke rehabilitation after temporal middle cerebral artery occlusion (tMCAO) in rats. Temperature calculations and histological results showed the safety of the application even with prolonged 40 min sonication. RESULTS The output ultrasonic wave produced from a custom PZT transducer had a central frequency of 457 kHz and peak to peak pressure of 426 kPa. The device weight was 20 g, allowing a full range of motion. The stimulation was found to induce hemodynamic changes in the sonicated area, while open-field tests showed that ultrasound applied to the ipsilateral hemisphere for 5 consecutive days after the stroke facilitated recovery. CONCLUSION The wearable tFUS system has been designed and implemented on moving rats. The results showed the ability of device to cause both short- and long lasting effects. SIGNIFICANCE The proposed device provides a more natural environment to investigate the effects of tFUS for behavioral and long-term studies.
Collapse
|
5
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
6
|
Deng C, Li J, Li L, Sun F, Xie J. Effects of hypoxia ischemia on caspase-3 expression and neuronal apoptosis in the brain of neonatal mice. Exp Ther Med 2019; 17:4517-4521. [PMID: 31086583 PMCID: PMC6488988 DOI: 10.3892/etm.2019.7487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Effects of hypoxia ischemia on caspase-3 expression and neuronal apoptosis in the brain of neonatal mice were investigated. Twenty-five neonatal CD1 mice aged 1 week were selected and randomly divided into sham-operation group (n=8) and newborn hypoxia ischemia encephalopathy (NHIE) model group (n=17). The messenger ribonucleic acid (mRNA) expression levels of caspase-3 and Fas ligand (FasL) in brain tissues of mice in both groups were detected via reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of caspase-3 and FasL in mice in both groups were detected via western blotting. Moreover, apoptosis of brain tissues was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and caspase-3 protein expression level in brain tissues was detected using immunohistochemical methods. Results of RT-PCR and western blotting revealed that compared with those in sham-operation group, caspase-3 and FasL expression levels in model group were significantly increased. Results of TUNEL showed that the number of apoptotic neurons in model group was significantly increased. Besides, results of immunohistochemical detection manifested that the caspase-3 protein expression level in model group was obviously increased. Hypoxia ischemia can lead to significant increase of caspase-3 expression and increase of neuronal apoptosis in the brain of neonatal mice.
Collapse
Affiliation(s)
- Changbo Deng
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Juan Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Luyi Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fengjie Sun
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jiqing Xie
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
7
|
Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu CX, Tang YC, Wu H. LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle 2018; 18:156-166. [PMID: 30563429 DOI: 10.1080/15384101.2018.1560202] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the underlying mechanism of lncRNA myocardial infarction-associated transcript (MIAT) in hypoxic-ischemic (HI)-induced neonatal cerebral palsy. MATERIALS AND METHODS Neonatal rat model of HI injury was established to detect the motor function. LncRNA MIAT, miR-211, glial cell line-derived neurotrophic factor (GDNF) and caspase-3 expressions were measured by qRT-PCR or western blot. The apoptosis of Neuro2A cells was detected by flow cytometry. RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to confirm the interaction between MIAT and miR-211. RESULTS Compared with control group, lncRNA MIAT and GDNF were downregulated in striatal tissues of neonatal rats in HI group and oxygen glucose deprivation (OGD)-induced ischemic injury of Neuro2A cells, whereas miR-211 was up-regulated in striatal tissues of HI group and OGD-induced ischemic injury of Neuro2A cells. LncRNA MIAT interacted with miR-211, and lncRNA MIAT overexpression reduced neuron apoptosis through miR-211. Besides, GDNF expression was positively regulated by lncRNA MIAT and negatively regulated by miR-211 in Neuro2A cells. In vivo experiment proved MIAT promoted motor function and relieved HI injury. CONCLUSION MIAT overexpression reduced apoptosis of Neuro2A cells through miR-211/GDNF, which relieved HI injury of neonatal rats.
Collapse
Affiliation(s)
- En-Yao Li
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Peng-Ju Zhao
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jie Jian
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Bao-Qi Yin
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Zhen-Yu Sun
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Cui-Xiang Xu
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - You-Cai Tang
- a Department of children rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan , The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Hong Wu
- b Central Laboratory , Henan Province Hospital of TCM , Zhengzhou , China
| |
Collapse
|
8
|
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 2018; 8:4393-4408. [PMID: 30214628 PMCID: PMC6134932 DOI: 10.7150/thno.26869] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Focused ultrasound with microbubbles promises unprecedented advantages for blood-brain barrier disruption over existing intracranial drug delivery methods, as well as a significant number of tunable parameters that affect its safety and efficacy. This review provides an engineering perspective on the state-of-the-art of the technology, considering the mechanism of action, effects of microbubble properties, ultrasound parameters and physiological variables, as well as safety and potential therapeutic applications. Emphasis is placed on the use of unified parameters, such as microbubble volume dose (MVD) and ultrasound mechanical index, to optimize the procedure and establish safety limits. It is concluded that, while efficacy has been demonstrated in several animal models with a wide range of payloads, acceptable measures of safety should be adopted to accelerate collaboration and improve understanding and clinical relevance.
Collapse
Affiliation(s)
- Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| |
Collapse
|
9
|
Huang FY, Lei J, Sun Y, Yan F, Chen B, Zhang L, Lu Z, Cao R, Lin YY, Wang CC, Tan GH. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology 2018; 7:e1446720. [PMID: 29900064 DOI: 10.1080/2162402x.2018.1446720] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Immunogenic cell death (ICD) is a specific kind of cell death that stimulates the immune system to combat cancer cells. Ultrasound (US)-controlled targeted release of drugs by liposome-microbubble complexes is a promising approach due to its non-invasive nature and visibility through ultrasound imaging. However, it is not known whether this approach can enhance ICD induced by drugs, such as doxorubicin. Herein, we prepared a doxorubicin-liposome-microbubble complex (MbDox), and the resultant MbDox was then characterized and tested for US-controlled release of Dox (MbDox+US treatment) to enhance the induction of ICD in LL/2 and CT26 cancer cells and in syngeneic murine models. We found that MbDox+US treatment caused more cellular uptake and nuclear accumulation of Dox in tumor cells, and more accumulation of Dox in tumor tissues. Enhanced induction of ICD occurred both in vitro and in vivo. MbDox+US treatment induced more apoptosis, stronger membrane exposure and the release of ER stress proteins and DAMPs in tumor cells, and increased DC maturation in vitro. In addition, MbDox+US treatment also resulted in stronger therapeutic effects in immunocompetent mice than in immunodeficient mice. Moreover, MbDox+US enhancement of ICD was also evidenced by a higher proportion of activated CD8+ T-lymphocytes but lower Treg in tumor tissues. Taken together, our results demonstrate that US-controlled release of ICD inducers into nuclei using liposome-microbubble complexes may be an effective approach to enhance the induction of ICD for tumor treatment.
Collapse
Affiliation(s)
- Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Jing Lei
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou , China
| | - Yan Sun
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Fei Yan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Bin Chen
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Liming Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Zhuoxuan Lu
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Rong Cao
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Ying-Ying Lin
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Cai-Chun Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou , China
| | - Guang-Hong Tan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| |
Collapse
|
10
|
Wu T, Yang L, Chen Y, Ni Y, Jiang J, Zhang W, Zhou Q, Zheng X, Wang Q, Fu Z, Li H. Pilose antler polypeptides ameliorates hypoxic-ischemic encephalopathy by activated neurotrophic factors and SDF1/CXCR4 axis in rats. Acta Biochim Biophys Sin (Shanghai) 2018; 50:254-262. [PMID: 29385398 DOI: 10.1093/abbs/gmy005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex condition which is associated with high mortality and morbidity. However, few promising treatments for HIE exist. In the present study, the central objective was to identify the therapeutic effect of pilose antler polypeptides (PAP) on HIE in rats. Sprague-Dawley (SD) rats (14 days old) were used and divided into three groups, including control group, hypoxic-ischemia (HI) group and PAP group. After 21 days of treatment, locomotor activity was improved in PAP-treated rats, brain atrophy was decreased and cerebral edema was mitigated to some extent. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis indicated that PAP administration decreased the expressions of inflammatory cytokines and apoptosis genes in hippocampus compared with HI group. Furthermore, the mRNA expressions of genes related to neurotrophic factors were significantly increased in the hippocampus. In addition, the expressions of oxidative stress markers were all down-regulated after PAP administration. Moreover, PAP up-regulated both the mRNA and protein levels of SDF1 and CXCR4, which may activate the SDF1/CXCR4 axis to moderate brain injury. These results suggest that PAP may be potentially used in the treatment of HIE.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luna Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianguo Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanjing Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianchen Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojun Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Li
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
11
|
Yulug B, Hanoglu L, Kilic E. The neuroprotective effect of focused ultrasound: New perspectives on an old tool. Brain Res Bull 2017; 131:199-206. [PMID: 28458041 DOI: 10.1016/j.brainresbull.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Transcranial focused ultrasound (tFUS) is a novel technique that can noninvasively modulate the cortical function. Moreover, there are rapidly replicating evidence suggesting the role of tFUS for targeted neuroprotective drug delivery by increasing the permeability of the central nervous system barrier that results with increased neuroprotective activity. In contrast to the indirect neuroprotective effect, there is rare evidence suggesting the direct parenchymal neuroprotective effect of transcranial focused ultrasound (tFUS). In the light of these findings, we aimed to review the direct and indirect neuroprotective effect of FUS in various animal models of Stroke, Parkinson's Disease, Alzheimer's Disease and Major Depressive Disorder. METHODS A literary search was conducted, utilizing search terms "animal", "focused ultrasound", "neuroprotection", "Alzheimer's Disease", "Parkinson's Disease ", "Stroke", "Neurodegenerative disease" and "Major Depressive Disorder". Items were excluded if they failed to: (1) include patients, (2) editorials, and letters. RESULTS This mini-review article presents an up-to-date review of the neuroprotective effects of tFUS in animal studies and suggests the dual neurotherapeutic role of tFUS in various neurodegenerative diseases. CONCLUSION Future well-conducted human studies are emergently needed to assess the neuroprotective effects of FUS.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey.
| | - Lutfu Hanoglu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| |
Collapse
|
12
|
Mulvana H, Browning RJ, Luan Y, de Jong N, Tang MX, Eckersley RJ, Stride E. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:232-251. [PMID: 27810805 DOI: 10.1109/tuffc.2016.2613991] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Collapse
|
13
|
Cobianchi S, Arbat-Plana A, López-Álvarez VM, Navarro X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr Neuropharmacol 2017; 15:495-518. [PMID: 27026050 PMCID: PMC5543672 DOI: 10.2174/1570159x14666160330105132] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. METHODS Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. RESULTS Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. CONCLUSION Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Víctor M. López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
14
|
Zhang Y, Lan R, Wang J, Li XY, Zhu DN, Ma YZ, Wu JT, Liu ZH. Acupuncture reduced apoptosis and up-regulated BDNF and GDNF expression in hippocampus following hypoxia-ischemia in neonatal rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:124-132. [PMID: 26116163 DOI: 10.1016/j.jep.2015.06.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acupuncture attenuates neuronal damages following ischemia. AIM OF THE STUDY The purpose of the present study was to investigate the beneficial effects of acupuncture on hypoxia-ischemia induced brain damages in neonatal rats. MATERIALS AND METHODS Male postnatal 7 days rats were randomly divided into 3 groups: sham control (sham), hypoxia-ischemia (HI), and HI plus acupuncture treatment (HI+Acu). The rats in HI and HI+Acu groups were submitted to model of neonatal HI, established by occluding the left common carotid artery followed by a 3.5h period of hypoxia (8% O2-92% N2). At 24h after HI, animals were stimulated by acupuncture treatment once a day and the treatment continued during 4 weeks, 5days/week. Behavioral functions, learning and memory ability, and body weight were observed at different time-points after HI. DNA fragmentation assay were performed with TUNEL staining to evaluate apoptosis and expression levels of mitochondrial Bcl-2, mitochondrial Bax, Cleaved caspase 3, Cleaved caspase 9 in the damaged hippocampus were detected by western blotting 28 days following HI. GDNF, BDNF levels in hippocampus were also determined. RESULTS The results showed that acupuncture significantly promoted growth and development, improved neurobehavioral function, learning and memory ability after 20 days' treatment. Furthermore, we obtained one interesting finding that acupuncture attenuated cellular apoptosis and up-regulated GDNF and BDNF levels in hippocampus. CONCLUSIONS All of these results suggest that acupuncture as a potential treatment may exert neuroprotective effects via inhibiting cellular apoptosis, increased GDNF and BDNF expression levels in rat hippocampus experiencing HI.
Collapse
Affiliation(s)
- Yong Zhang
- Cerebral Palsy Rehabilitation Department, The Third Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Rui Lan
- Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Henan 450000, China
| | - Jun Wang
- Cerebral Palsy Rehabilitation Department, The Third Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Xiang-Yun Li
- Cerebral Palsy Rehabilitation Department, The Third Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Deng-Na Zhu
- Cerebral Palsy Rehabilitation Department, The Third Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Yun-Zhi Ma
- Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Henan 450000, China
| | - Ji-Tao Wu
- Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Henan 450000, China
| | - Zhen-Huan Liu
- Cerebral Palsy Rehabilitation Center, NanHai Maternitiy and Child Healthcare Hospital, Foshan 528200, China.
| |
Collapse
|
15
|
Neuroprotective effects of electroacupuncture on hypoxic-ischemic encephalopathy in newborn rats are associated with increased expression of GDNF-RET and protein kinase B. Chin J Integr Med 2015; 22:457-66. [PMID: 26033318 DOI: 10.1007/s11655-015-1972-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To explore the neuroprotective effects of electroacupuncture (EA) on hypoxic-ischemic encephalopathy (HIE) and to further investigate the role of glial cell line-derived neurotrophic factor (GDNF) family receptor member RET (rearranged during transfection) and its key downstream phosphatidylinositol 3 kinase (PI-3K)/protein kinase B (Akt) pathway in the process. METHODS A total of 220 seven-day-old SD rats (of either sex, from 22 broods) were randomly divided into two groups, one (30 rats) for sham-surgery group and the other (190 rats) for HIE model group. The HIE model was established using the left common carotid artery ligation method in combination with hypoxic treatment. The successfully established rats were randomly divided into five groups, including control model group, EA group, sham-EA group, antagonist group and antagonist plus electroacupuncture group, with 35 rats in each group. Baihui (GV 20), Dazhui (GV 14), Quchi (LI 11) and Yongquan (KI 1) acupoints were chosen for acupuncture. EA was performed at Baihui and Quchi for 10 min once a day for continuous 1, 3, 7 and 21 days, respectively. The rats were then killed after the operation and injured cerebral cortex was taken for the measurement of neurologic damage by hematoxylin-eosin (HE) staining and the degenerative changes of cortical ultrastructure by transmission electron microscopy. RET mRNA level and Akt protein level were detected by real-time reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively. RESULTS EA could ameliorate neurologic damage of the first somatic sensory area (S1Tr) and alleviate the degenerative changes of ultrastructure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. CONCLUSION EA has neuroprotective effects on HIE and could be a potential therapeutic strategy for HIE in the neonate. Activation of RET/Akt signaling pathway might be involved in this process.
Collapse
|
16
|
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Intracerebral administration of ultrasound-induced dissolution of lipid-coated GDNF microbubbles provides neuroprotection in a rat model of Parkinson's disease. Brain Res Bull 2014; 103:60-5. [PMID: 24583079 DOI: 10.1016/j.brainresbull.2014.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Neurotrophic factors, such as glial cell derived neurotrophic factor (GDNF), have been shown to provide a neuroprotective effect in PD rats. We have previously reported that ultrasound-induced lipid-coated GDNF microspheres, which release GDNF in a sustained manner after low frequency ultrasound stimulation, can reduce hypoxic-ischemic injury in neonatal rats. In the present study, we investigated whether lipid-coated GDNF microspheres can provide a neuroprotective effect in a rat model of PD. After a rat model of PD was produced by 6-hydroxydompamine (6-OHDA) injections, lipid-coated GDNF microspheres (1.5mg/kg) were injected into the striatum of PD rats. We found that GDNF levels were increased in the striatum of PD rats after lipid-coated GDNF microspheres administration following low frequency ultrasound stimulation (20kHz, 5min per day, daily for 4 weeks). Moreover, GDNF microspheres reduced apomorphine-induced rotations, and increased striatal dopamine and nigral tyrosine hydroxylase (TH) levels in PD rats. Additionally, GDNF microspheres reduced caspase-3, tumor necrosis factor-alpha, matrix metalloproteinase 9 (MMP-9) and OX-6 levels induced by 6-OHDA injections in PD rats. These data indicated that lipid-coated GDNF microspheres can provide a neuroprotective effect in PD rats.
Collapse
|
18
|
Sun NF, Zhong WY, Lu SA, Tian YL, Chen JB, Hu SY, Tian AL. Coexpression of recombinant adenovirus carrying GDNF and EDNRB genes in neural stem cells in vitro. Cell Biol Int 2013; 37:458-63. [PMID: 23504906 DOI: 10.1002/cbin.10060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/20/2013] [Indexed: 12/13/2022]
Abstract
Gene therapy and nerve stem cells isolated from the developing human enteric nervous system (ENS) are significant. They may open the route for the cell therapy of Hirschsprung's disease (HD). We have constructed the recombinant adenovirus-carrying glial cell line-derived neurotrophic factor (GDNF) and endothelin receptor B (EDNRB) gene, and investigated the exosomatic coexpression in neural stem cells. The recombinant adenovirus Ad-GE coexpressing GDNF and EDNRB gene was constructed by the AdEasy system and confirmed by the reverse transcription polymerase chain reaction (RT-PCR) method. Expression of exogenous genes in neural stem cells after transfection was confirmed by the flow cytometry and real-time fluorescence quantitative PCR. Fragments of pAd Track-CMV-GE were consistent with GDNF and EDNRB. The green fluorescence of the positive cells was followed by fluorescence microscopy at 24 h after NSCs had been transfected, reaching a peak at 72 h after transfection. Flow cytometry showed that the efficiency of transfection was 15.0, 23.6, and 25.4% at 24, 48 and 72 h respectively. Real-time fluorescence quantitative PCR showed the expression levels of mRNA of GDNF and EDNRB in 48 and 72 h groups were obviously higher than that in 24 and 96 h groups. Recombinant adenovirus carrying GDNF and EDNRB genes are coexpressed in neural stem cells, which may offer the possibility of a novel approach to local combination gene therapy for Hirschsprung's disease.
Collapse
Affiliation(s)
- Nian-Feng Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|