1
|
Gandara CK, Palacios JL, Luis Quintanar J, Zhang Y, Li X, Munoz A. Improvement of neurogenic urinary dysfunctions in female rats treated with an injection of botulinum toxin A at the epicenter of the spinal cord injured site. Neurourol Urodyn 2024; 43:246-257. [PMID: 37901953 DOI: 10.1002/nau.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVE To assess the effect of an injection of botulinum toxin A (BoNT/A) at the epicenter of the spinal cord injury (SCI) site on the recovery of lower urinary tract function in female rats with thoracic SCI. MATERIALS AND METHODS Twenty-four female Wistar rats with Sham (laminectomy at T8/T9 level) or SCI (at T8/T9; 30 g compression for 5 s) were assigned into Sham-SS (injected with 5 µL of saline solution), Sham-BoNT/A (injected with 15 pg/rat, equivalent to 7.5 Units/kg of BoNT/A in 5 µL volume), SCI-SS (injured and injected with saline), SCI-BoNT/A (injured and injected with BoNT/A), N = 6 per group. Weekly evaluation of stereotyped micturition behavior, hind-limb nociception, and locomotor activity was performed 1 week before and during 6 weeks after surgery. Subsequently, all groups underwent simultaneous electromyography of the external urethral sphincter (EUS-EMG) and cystometric (CMG) studies. RESULTS A compression SCI at the T8/T9 thoracic level significantly impairs sensory and locomotive functions, as well as stereotyped micturition behavior. However, these impairments were improved by BoNT/A injection after SCI. Neither injections of saline solution nor BoNT/A had an appreciable effect on the same parameters evaluated in the Sham groups. The combined EUS-EMG and CMG evaluations revealed important improvements of lower urinary tract physiology, particularly a reduction in the frequency of non-voiding contractions and the properties of EUS bursting activity indicated as the amplitude of the EUS-EMG signal and duration of burst electrical activity during effective voiding. CONCLUSION The severe impairments on sensory and locomotive functions as well stereotyped micturition caused by an SCI could be potentially attenuated by an injection of a small amount of BoNT/A directly into the epicenter of the SCI region. A reduction in the release of neurotoxic neurotransmitters requiring the SNARE complex may be the mechanism triggered by BoNT/A to reduce neurotoxicity and hyperexcitability created in the SCI area to improve the survival of spinal cord cells involved in micturition.
Collapse
Affiliation(s)
- Cynthia K Gandara
- Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| | - Jose L Palacios
- Facultad de Ciencias para el Desarrollo Humano, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | - J Luis Quintanar
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Xuhong Li
- Department of Rehabilitation Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Alvaro Munoz
- Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| |
Collapse
|
2
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|
3
|
Rezvan M, Meknatkhah S, Hassannejad Z, Sharif-Alhoseini M, Zadegan SA, Shokraneh F, Vaccaro AR, Lu Y, Rahimi-Movaghar V. Time-dependent microglia and macrophages response after traumatic spinal cord injury in rat: a systematic review. Injury 2020; 51:2390-2401. [PMID: 32665068 DOI: 10.1016/j.injury.2020.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To acquire evidence-based knowledge in temporal and spatial patterns of microglia/macrophages changes to facilitate finding proper intervention time for functional restoration after traumatic spinal cord injury (TSCI). SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran. METHODS We searched PubMed and EMBASE via Ovid SP with no temporal and linguistic restrictions. Besides, hand-search was performed in the bibliographies of relevant studies. The experimental non-interventional and non-transgenic animal studies confined to the rat species which assess the pathological change of microglia /macrophages at the specified time were included. RESULTS We found 15,315 non-duplicate studies. Screening through title and abstract narrowed down to 607 relevant articles, 31 of them were selected based on the inclusion criteria. The reactivity of the microglia/macrophages initiates in early hours PI in contusion, compression and transection models. Cells activity reached a maximum within 48 h to 28 days in compression, 7 days in contusion and between 4 and 60 days in transection models. Inflammatory response occurred at the epicenter, in or near the lesion site in both gray and white matter in all three injury models with a maximum extension of one centimeter caudal and rostral to the epicenter in the gray matter in contusion and transection models. CONCLUSION This study was designed to study spatial-temporal changes in the activation of microglia/macrophages overtime after TSCI. We were able to demonstrate time-dependent cell morphological changes after TSCI. The peak times of cell reactivity and the areas where the cells responded to the injury were determined.
Collapse
Affiliation(s)
- Motahareh Rezvan
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran; Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sharif-Alhoseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan A Zadegan
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shokraneh
- King's Technology Evaluation Centre (KiTEC), London Institute of Healthcare Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Alexander R Vaccaro
- Department of Orthopedics and Neurosurgery, The Rothman Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Bone marrow mesenchymal stem cells encapsulated thermal-responsive hydrogel network bridges combined photo-plasmonic nanoparticulate system for the treatment of urinary bladder dysfunction after spinal cord injury. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111741. [PMID: 31901721 DOI: 10.1016/j.jphotobiol.2019.111741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a distressing injury and an irretrievable dramatic event that can debilitate victims for lifespan. Recovery and treatment of SCI is critical challenges for medicine, to overcome the hurdles stem cells and hydrogel scaffolds implantation is a boon for SCI recovery. In this regard, we reported the synthesis of Gold nanoparticles (Au NPs) loaded Agarose/Poly (N-isopropylacrylamide) (PNIPAM) as promising materials for SCI treatment. Herein, Au NPs was synthesized by well-established citrate reduction method and the prepared materials were characterised by UV-visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), Fourier- transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and EDAX analysis. The microscopic images showed an elliptical or ovoid porous structure nature of hydrogel, and successful and homogenous loading of photo plasmonic nanoparticles into the hydrogel structure. The in vitro cell viability and inflammation analyses data exhibited that prepared hydrogels have no toxic to the cells and displayed high anti-regenerative ability with bone marrow Mesenchymal stem cells (MSCs) and macrophages cells. The in vivo analysis study demonstrated that the treated materials with encapsulated MSCs have greater nerve tissue regeneration efficacy which was confirmed by the results of BBB scores. The hind limb locomotion of treated model animals was totally vanished after post-operational surgery. It's established that implanted nano-hydrogel materials combined with MSCs have quicker recovery of motor function after post-operative surgery, when compared to the other implanted animal groups.
Collapse
|
5
|
Salazar BH, Hoffman KA, Zhang C, Zhang Y, Cruz Y, Boone TB, Munoz A. Modulatory effects of intravesical P2X2/3 purinergic receptor inhibition on lower urinary tract electromyographic properties and voiding function of female rats with moderate or severe spinal cord injury. BJU Int 2019; 123:538-547. [PMID: 30255543 PMCID: PMC6715153 DOI: 10.1111/bju.14561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the role that intravesical P2X2/3 purinergic receptors (P2X2/3Rs) play in early and advanced neurogenic lower urinary tract (LUT) dysfunction after contusion spinal cord injury (SCI) in female rats. MATERIALS AND METHODS Female Sprague-Dawley rats received a thoracic Th8/Th9 spinal cord contusion with either force of 100 kDy (cN); moderate) or 150 kDy (cN; severe); Sham rats had no injury. Evaluations on urethane-anesthetised rats were conducted at either 2 or 4 weeks after SCI. LUT electrical signals and changes in bladder pressure were simultaneously recorded using cystometry and a set of custom-made flexible microelectrodes, before and after intravesical application of the P2X2/3R antagonist AF-353 (10 μM), to determine the contribution of P2X2/3R-mediated LUT modulation. RESULTS Severe SCI significantly increased bladder contraction frequency, and reduced both bladder pressure amplitude and intraluminal-pressure high-frequency oscillations (IPHFO). Intravesical P2X2/3R inhibition did not modify bladder pressure or IPHFO in the Sham and moderate-SCI rats, although did increase the intercontractile interval (ICI). At 2 weeks after SCI, the Sham and moderate-SCI rats had significant LUT electromyographic activity during voiding, with a noticeable reduction in LUT electrical signals seen at 4 weeks after SCI. Intravesical inhibition of P2X2/3R increased the ICI in the Sham and moderate-SCI rats at both time-points, but had no effect on rats with severe SCI. The external urethral sphincter (EUS) showed strong and P2X2/3R-independent electrical signals in the Sham and moderate-SCI rats in the early SCI stage. At 4 weeks after SCI, the responsiveness of the EUS was significantly attenuated, independently of SCI intensity. CONCLUSIONS This study shows that electrophysiological properties of the LUT are progressively impaired depending on SCI intensity and that intravesical P2X2/3R inhibition can attenuate electrical activity in the neurogenic LUT at early, but not at semi-chronic SCI. This translational study should be useful for planning clinical evaluations.
Collapse
Affiliation(s)
- Betsy H. Salazar
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
| | - Kristopher A. Hoffman
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
| | - Chuan Zhang
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Biomedical Engineering University of Houston
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangdong, China
| | - Yingchun Zhang
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Biomedical Engineering University of Houston
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangdong, China
| | - Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México
| | - Timothy B. Boone
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Urology, Houston Methodist Hospital
| | - Alvaro Munoz
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, México
- Corresponding Author: Alvaro Munoz, PhD, Current affiliation: Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, Km. 191, C.P. 46200, Colotlán, Jalisco, México., / Tel: +52-33-1058-5200 (Ext. 33679) / Fax: +1713-441-6463
| |
Collapse
|