1
|
Gyetvai BM, Vadasz C. Pleiotropic Effects of Grm7/ GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules 2025; 15:392. [PMID: 40149928 PMCID: PMC11940234 DOI: 10.3390/biom15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Natural gene variants of metabotropic glutamate receptor subtype 7 (Grm7), coding for mGluR7, affect individuals' alcohol-drinking preference. Psychopharmacological investigations have suggested that mGluR7 is also involved in responses to cocaine, morphine, and nicotine exposures. We review the pleiotropic effects of Grm7 and the principle of recombinant quantitative trait locus introgression (RQI), which led to the discovery of the first mammalian quantitative gene accounting for alcohol-drinking preference. Grm7/GRM7 can play important roles in mammalian ontogenesis, brain development, and predisposition to addiction. It is also involved in other behavioral phenotypes, including emotion, stress, motivated cognition, defensive behavior, and pain-related symptoms. This review identified pleiotropy and the modulation of neurobehavioral processes by variations in the gene Grm7/GRM7. Patterns of pleiotropic genes can form oligogenic architectures whosecombined additive and interaction effects can significantly predispose individuals to the expressions of disorders. Identifying and characterizing pleiotropic genes are necessary for understanding the expressions of complex traits. This requires tasks, such as discovering and identifying novel genetic elements of the genetic architecture, which are unsuitable for AI but require classical experimental genetics.
Collapse
Affiliation(s)
- Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
| | - Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Kalymma, Stony Point, New York, NY 10980, USA
| |
Collapse
|
2
|
Stachowicz K. Interactions between metabotropic glutamate and CB1 receptors: implications for mood, cognition, and synaptic signaling based on data from mGluR and CB1R-targeting drugs. Pharmacol Rep 2024; 76:1286-1296. [PMID: 38941064 PMCID: PMC11582162 DOI: 10.1007/s43440-024-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are part of the G protein-coupled receptors (GPCRs) family. They are coupled to Gαq (group I) or Gi/o (groups II and III) proteins, which result in the generation of diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) or the inhibition of adenylyl cyclase, respectively. mGluRs have been implicated in anxiety, depression, learning, and synaptic plasticity. Similarly, CB1 cannabinoid receptors (CB1Rs), also GPCRs, play roles in cognitive function and mood regulation through Gαi/o-mediated inhibition of adenylyl cyclase. Both mGluRs and CB1Rs exhibit surface labeling and undergo endocytosis. Given the similar cellular distribution and mechanisms of action, this review complies with fundamental data on the potential interactions and mutual regulation of mGluRs and CB1Rs in the context of depression, anxiety, and cognition, providing pioneering insights into their interplay.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
4
|
Kahvandi N, Ebrahimi Z, Sharifi M, Karimi SA, Shahidi S, Salehi I, Haddadi R, Sarihi A. S-3,4-DCPG, a potent orthosteric agonist for the mGlu8 receptor, facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats. Pharmacol Biochem Behav 2024; 240:173772. [PMID: 38653345 DOI: 10.1016/j.pbb.2024.173772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The limbic system, particularly the NAc, shows a high concentration of metabotropic glutamate receptors (mGluRs). Recent evidence suggests the significant involvement of mGluRs in mental disorders, including substance abuse and addiction. The objective of this study was to examine the involvement of mGlu8 receptors in the NAc in the mechanisms underlying the extinction and reinstatement of conditioned place preference (CPP) induced by morphine. Male Wistar rats underwent surgical implantation of bilateral cannulas in the NAc and were assessed in a CPP protocol. In study 1 at the same time as the extinction phase, the rats were given varying doses of S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl). In study 2, rats that had undergone CPP extinction were given S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl) five minutes prior to receiving a subthreshold dose of morphine (1 mg/kg) in order to reactivate the previously extinguished morphine response. The findings demonstrated that administering S-3,4-DCPG directly into the accumbens nucleus resulted in a decrease in the duration of the CPP extinction phase. Moreover, dose-dependent administration of S-3,4-DCPG into the NAc inhibited CPP reinstatement. The observations imply that microinjection of S-3,4-DCPG as a potent orthosteric agonist with high selectivity for the mGlu8 receptor into the NAc promotes the process of extinction while concurrently exerting inhibitory effects on the reinstatement of morphine-induced CPP. This effect may be associated with the modulation of glutamate engagement within the NAc and the plasticity of reward pathways at the synaptic level.
Collapse
Affiliation(s)
- Nazanin Kahvandi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sharifi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Ebrahimi Z, Kahvandi N, Shahriari E, Komaki A, Karimi SA, Naderishahab M, Sharifi M, Sarihi A. VU0155041, a positive allosteric modulator of mGluR4, in the nucleus accumbens facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats. Brain Res Bull 2023; 197:57-64. [PMID: 36997034 DOI: 10.1016/j.brainresbull.2023.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Nucleus accumbens (NAc) neurons appear to be at the hub of the reward circuit. New evidence suggests that the behavioural effects of morphine substances may be significantly regulated by glutamate-mediated transmission, notably by metabotropic glutamate (mGlu) receptors. Here, we examined the hypothesis that the mGlu4 receptor within that NAc has a role in the extinction and reinstatement of morphine-induced conditioned place preference (CPP). The animals received bilaterally microinjections of VU0155041, a positive allosteric modulator (PAM) and partial agonist of mGlu4 receptor, into the NAc. In Experiment 1, the rats received VU0155041 (10, 30 and 50μg/0.5μL) during the extinction period. In Experiment 2, the CPP extinguished rats received VU0155041 (10, 30 and 50μg/0.5μL) five minutes prior to the administration of morphine (1mg/kg) in order to reinstate the extinguished CPP. The results showed that the intra-accumbal administration of VU0155041 reduced the extinction period of CPP. Furthermore, the administration of VU0155041 into the NAc dose-dependently inhibited the reinstatement of CPP. The findings suggested that the mGluR4 in the NAc facilitates the extinction and inhibits the reinstatement of the morphine-induced CPP, which could be mediated by an increase in the release of extracellular glutamate.
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazanin Kahvandi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elahe Shahriari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sharifi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Ebrahimi Z, Kahvandi N, Komaki A, Karimi SA, Naderishahab M, Sarihi A. The role of mGlu4 receptors within the nucleus accumbens in acquisition and expression of morphine-induced conditioned place preference in male rats. BMC Neurosci 2021; 22:17. [PMID: 33743609 PMCID: PMC7981834 DOI: 10.1186/s12868-021-00627-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Several studies have shown that glutamate neurotransmission in the nucleus accumbens (NAc) is required for the development of morphine-induced conditional place preference (CPP). In addition, metabotropic glutamate receptors (mGluRs) in NAc play important roles in the reward pathways. However, the precise role of mGluR4 in different steps of the morphine-induced CPP is less well known. In the present study the effect of bilateral intra-accumbal infusion of VU0155041, as a specific mGluR4 agonist on the acquisition and expression of morphine induced CPP in male Wistar rats was investigated. The animals were bilaterally implanted with guide cannulae above the NAc. In the first step of the study, the VU0155041 was administered at doses of 10, 30 and 50 μg/0.5 μL saline per side into the NAc during the 3 days of morphine (5 mg/kg) conditioning (acquisition) phase of morphine-induced CPP. In the second step of the study, the rats bilaterally received VU0155041 at the dose of 50 μg/0.5 μL, 5 min before the post-conditioning test in order to check the effect of VU0155041 on the expression of morphine-induced CPP. Results The results showed that the intra-accumbal injection of VU0155041 inhibits the acquisition of morphine-induced CPP in a dose dependent manner, but had no effect on expression. Conclusions The data indicated that intra-NAc administration of VU0155041 dose dependently blocks the establishment of morphine-induced CPP and reduces the rewarding properties of morphine. These effects may be related to changes in glutamate activity in the NAC and/or learning dependent mechanism of glutamate neurotransmission in reward pathway(s).
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazanin Kahvandi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Chen X, Ma Y, Mou X, Liu H, Ming H, Chen Y, Liu Y, Liu S. Synergistic Effect of Several Neurotransmitters in PFC-NAc-VTA Neural Circuit for the Anti-Depression Effect of Shuganheweitang in a Chronic Unpredictable Mild Stress Model. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211002415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Depression, a major worldwide mental disorder, leads to massive disability and can result in death. The PFC-NAc-VTA neuro circuit is related to emotional, neurovegetative, and cognitive functions, which emerge as a circuit-level framework for understanding reward deficits in depression. Neurotransmitters, which are widely distributed in different brain regions, are important detected targets for the evaluation of depression. Shuganheweitang (SGHWT) is a popular prescription in clinical therapy for depression. In order to investigate its possible pharmacodynamics and anti-depressive mechanism, the complex plant material was separated into different fractions. These in low and high doses, along with low and high doses of SGHWT were tested in animal behavior tests. The low and high doses of SGHWT were more effective than the various fractions, which indicate the importance of synergistic function in traditional Chinese medicine. Furthermore, amino acid (GABA, Glu) and monoamine neurotransmitters (DA, 5-HT, NA, 5-HIAA) in the PFC-NAc-VTA neuro circuit were investigated by UPLC-MS/MS. The level trend of DA and 5-HT were consistent in the PFC-NAc-VTA neuro circuit, whereas 5-HIAA was decreased in the PFC, Glu was decreased in the PFC and VTA, and NA and GABA were decreased in the NAc. The results indicate that the pathogenesis of depression is associated with dysfunction of the PFC-NAc-VTA neural circuit, mainly through the neural projection effects of neurotransmitters associated with various brain regions in the neural circuit. PCA and OPLS-DA score plots demonstrated the similarities of individuals within each group and the differences among the groups. In this study, SGHWT could regulate the concentration level of different neurotransmitters in the PFC-NAc-VTA neuro circuit to improve the depression, which benefitted from the recognition of the brain reward circuitry in mood disorders.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Yuanchun Ma
- Hubei University of Chinese Medicine, Wuhan, P. R. China
- Dr Ma’s Laboratories Inc., VancouverBC, Canada
| | - Xiongjun Mou
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Hao Liu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Hao Ming
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Yu Chen
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Yanwen Liu
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Songlin Liu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| |
Collapse
|
8
|
Heinsbroek JA, De Vries TJ, Peters J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039602. [PMID: 32341068 DOI: 10.1101/cshperspect.a039602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and is of critical importance for the synaptic and circuit mechanisms that underlie opioid addiction. Opioid memories formed over the course of repeated drug use and withdrawal can become powerful stimuli that trigger craving and relapse, and glutamatergic neurotransmission is essential for the formation and maintenance of these memories. In this review, we discuss the mechanisms by which glutamate, dopamine, and opioid signaling interact to mediate the primary rewarding effects of opioids, and cover the glutamatergic systems and circuits that mediate the expression, extinction, and reinstatement of opioid seeking over the course of opioid addiction.
Collapse
Affiliation(s)
- Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Taco J De Vries
- Amsterdam Neuroscience, Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081HV Amsterdam, The Netherlands.,Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center, 1081HZ Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
9
|
Kahvandi N, Ebrahimi Z, Karimi SA, Shahidi S, Salehi I, Naderishahab M, Sarihi A. The effect of the mGlu8 receptor agonist, (S)-3,4-DCPG on acquisition and expression of morphine-induced conditioned place preference in male rats. Behav Brain Funct 2021; 17:1. [PMID: 33612106 PMCID: PMC7897377 DOI: 10.1186/s12993-021-00174-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 02/24/2023] Open
Abstract
Background The nucleus accumbens (NAc) plays a principal role in drug reward. It has been reported that metabotropic glutamate receptors (mGlu receptors) play a key role in the rewarding pathway(s). Previous studies have shown the vast allocation of the different types of mGlu receptors, including mGlu8 receptors, in regions that are associated with opioid rewards, such as the NAc. The aim of the present study was to evaluate the role of mGlu8 receptors within the NAc in the acquisition and expression phases of morphine induced conditioned place preference (CPP). Adult male Wistar rats were bilaterally implanted by two cannulas' in the NAc and were evaluated in a CPP paradigm. Selective mGlu8 receptor allosteric agonist (S-3,4-DCPG) was administered at doses of 0.03, 0.3, and 3 μg/0.5 μL saline per side into the NAc on both sides during the 3 days of morphine (5 mg/kg) conditioning (acquisition) phase, or before place preference test, or post-conditioning (expression) phase of morphine-induced CPP. Results The results revealed that intra-accumbal administration of S-3,4-DCPG (0.3 and 3 μg) markedly decreased the acquisition in a dose-dependent manner but had no effect on expression of morphine-induced CPP. Conclusions The findings suggest that activation of mGlu8 receptors in the NAc dose-dependently blocks the establishment of morphine-induced CPP and reduces the rewarding properties of morphine which may be related to the glutamate activity into the NAc and in reward pathway(s). These data suggest that mGlu8 receptor may be involved in conditioned morphine reward.
Collapse
Affiliation(s)
- Nazanin Kahvandi
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Zahra Ebrahimi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran. .,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Vadasz C, Gyetvai BM. Cocaine-Induced Sensitization is Linked to Distal Chromosome 6 Region in Congenic Mouse Model. Drug Alcohol Depend 2020; 215:108185. [PMID: 32768991 PMCID: PMC7502495 DOI: 10.1016/j.drugalcdep.2020.108185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Previously we mapped QTL Eac2 to mouse Chr6 and identified the first gene (Grm7) as accounting for alcohol consumption in a mammalian model. Despite the central role of glutamate receptors in addiction, the effects of Grm7 gene variants are not well known. Here we test the hypothesis that genetic variation of the distal mouse Chr6 Eac2 region, location of Grm7, controls cocaine-induced locomotor sensitization. METHOD C57BL/6By background and B6.C6.327.54 congenic mice were subjected to whole-genome SNP genotyping. Isogeneic (C57BL/6ByXB6.C6.327.54)F2 mice homozygous for SNPs in the BALB/c-type Eac2 region were selected to create a subcongenic strain (B6By.C6.108-120). In a 2-strain x 2-sex 2-treatment factorial design (n = 6-10) C57BL/6By and B6By.C6.108-120 mice received repeated daily cocaine or saline intraperitoneal injections, and locomotor activity was recorded for 90 minutes immediately after injection. RESULTS C57BL/6By females with the G/G genotype of SNP rs3723352 of Grm7 responded to cocaine with significantly higher activity and greater cocaine-induced sensitization than those with the BALB/cJ-type T/T genotype in the congenic strain. CONCLUSION The results are consistent with a large body of accumulated mechanistic evidence for a role of the mGlu7 receptor in the control of neurobiological responses to cocaine, and are consistent with the hypotheses that (1) natural variants of the Grm7 gene show pleiotropy and can modulate cocaine-induced behaviors in addition to alcohol consumption, (2) interactions between mGluR7 expression, estrogen receptors, and estradiol may explain phenotypic variation in females. Heritable variation of GRM7 may affect vulnerability to substance abuse in women.
Collapse
Affiliation(s)
- Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg Rd., 10962, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| | - Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg Rd., 10962, Orangeburg, NY, USA
| |
Collapse
|
12
|
Nazari-Serenjeh F, Zarrabian S, Azizbeigi R, Haghparast A. Effects of dopamine D1- and D2-like receptors in the CA1 region of the hippocampus on expression and extinction of morphine-induced conditioned place preference in rats. Behav Brain Res 2020; 397:112924. [PMID: 32976861 DOI: 10.1016/j.bbr.2020.112924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Considering the extent of drug use and its relapse rate worldwide, in the present study, we explored the role of intra-CA1 administration of D1-like and D2-like receptor antagonists on the expression and extinction of morphine-induced CPP. To induce morphine CPP, adult male Wistar rats received a daily subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Different doses of SCH23390 (0.25, 1 or 4 μg/0.5 μl saline), as a selective D1-like receptor antagonist, and sulpiride (0.25, 1, or 4 μg/0.5 μl DMSO), as a selective D2-like receptor antagonist, were bilaterally microinjected into the CA1 region in the expression and extinction phases 1 h before CPP evaluation. Conditioning scores and locomotor activities were recorded during the tests. Results indicated that the injection of the antagonists into the CA1 region dose-dependently attenuated the expression of the morphine-induced CPP and sulpiride revealed prominent behavioral results compared to SCH23390 in the expression phases. Furthermore, microinjections of SCH23390 and sulpiride shortened the extinction phase of the morphine-induced CPP without changing the locomotor activity. The results indicated the involvement of D1- and D2-like receptors within the CA1 region in the expression and extinction of rewarding properties of morphine.
Collapse
Affiliation(s)
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kruyer A, Chioma VC, Kalivas PW. The Opioid-Addicted Tetrapartite Synapse. Biol Psychiatry 2020; 87:34-43. [PMID: 31378302 PMCID: PMC6898767 DOI: 10.1016/j.biopsych.2019.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Opioid administration in preclinical models induces long-lasting adaptations in reward and habit circuitry. The latest research demonstrates that in the nucleus accumbens, opioid-induced excitatory synaptic plasticity involves presynaptic and postsynaptic elements as well as adjacent astroglial processes and the perisynaptic extracellular matrix. We outline opioid-induced modifications within each component of the tetrapartite synapse and provide a neurobiological perspective on how these adaptations converge to produce addiction-related behaviors in rodent models. By incorporating changes observed at each of the excitatory synaptic compartments into a unified framework of opioid-induced glutamate dysregulation, we highlight new avenues for restoring synaptic homeostasis that might limit opioid craving and relapse vulnerability.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
14
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Shahidi S, Komaki A, Sadeghian R, Soleimani Asl S. Effect of a 5-HT 1D receptor agonist on the reinstatement phase of the conditioned place preference test and hippocampal long-term potentiation in methamphetamine-treated rats. Brain Res 2018; 1698:151-160. [PMID: 30076792 DOI: 10.1016/j.brainres.2018.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH)-seeking relapse is associated with memory and synaptic plasticity changes. Serotonin is a key neuromodulator in this process. While there is a known distribution of 5-HT1D receptors in reward and memory areas, such as the hippocampus, its physiological function is currently unknown. Here, we evaluated effect of a 5-HT1D receptor agonist, PNU142633, on the reinstatement of METH-seeking behavior and long-term potentiation. Rats were implanted with a cannula into lateral ventricle, then treated with saline or METH (5 mg/kg) during the acquisition phase of the conditioned place preference (CPP) test. On day 13 of the extinction phase, METH groups were divided into four groups: METH (0: saline, 1, or 2.5 (priming METH) mg/kg; i.p.) + vehicle (5 µl/rat) or a priming dose of METH (2.5 mg/kg; i.p.) + PNU (2 µg/5 µl; i.c.v.) and their preference scores were calculated on reinstatement day (day 14). Immediately following this, electrophysiology was performed to assay the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude between groups. The results showed that CPP induction by METH gradually declined to extinction on days 12 and 13. A priming METH treatment significantly increased preference for the METH-paired chamber when compared with other groups, but pre-treatment with PNU significantly attenuated this effect. PS amplitude and fEPSP slopes in vehicle + priming METH rats were greater when compared with other groups. Furthermore, PNU attenuated the priming METH-induced increase in PS amplitude. These findings suggest that PNU can decrease synaptic transmission and prevent METH reinstatement in rats.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Vatankhah M, Karimi-Haghighi S, Sarihi A, Haghparast A. Intra-accumbal administration of AMN082, a metabotropic glutamate receptor type 7 allosteric agonist, inhibits the acquisition but not the expression of morphine-induced conditioned place preference in rats. Neurosci Lett 2018; 681:56-61. [PMID: 29800675 DOI: 10.1016/j.neulet.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022]
Abstract
The nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate are mediated by the activation of ionotropic and metabotropic glutamate receptors (mGluRs). Previous documents have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as the NAc. In this study, seventy male Wistar rats were used to investigate the role of mGluR7 receptors in the NAc on the acquisition and expression of morphine-induced conditioned place preference (CPP). In Experiment 1, to determine the effect of AMN082, a selective mGluR7 allosteric agonist, on the acquisition of morphine-induced conditioned place preference (CPP), the rats bilaterally received AMN082 (1, 3 and 5 μg/0.5 μL DMSO) during three-day conditioning by morphine (5 mg/kg). In Experiment 2, the rats bilaterally received AMN082 (5 μg/0.5 μL DMSO) 5 min prior to the post-conditioning test to investigate the effect of AMN082 on the expression of morphine-induced CPP. The results showed that the intra-accumbal injection of AMN082 prevents the acquisition of morphine-induced CPP in a dose-dependent manner. However, intra-accumbal injection of AMN082 had no effect on the expression of morphine-induced CPP. The findings propose that the mGluR7 in the NAc inhibits the acquisition of morphine-induced CPP that could be mediated by inhibition of NMDA receptors in the NAc.
Collapse
Affiliation(s)
- Mahsaneh Vatankhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|