1
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Benevides RDDL, de-Lima SMV, Chagas CL, de Lima CF, Abadie-Guedes R, Guedes RCA. Lactation in large litters influences anxiety, memory, and spreading depression in adult male rats that were chronically subjected to a non-convulsive pilocarpine dose. Nutr Neurosci 2020; 25:846-856. [PMID: 32912080 DOI: 10.1080/1028415x.2020.1819103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: Unfavorable lactation influences brain excitability and behavioral reactions in adults. Administration early in life of the cholinergic agonist, pilocarpine, even at non-convulsive doses, alters the brain excitability-related phenomenon known as cortical spreading depression (CSD), and produce anxiogenic-like behavior. However, the influence of unfavorable lactation on the CSD- and memory-effects of pilocarpine administration late in life has not been investigated. Herein, we analyzed the ponderal, electrophysiological (CSD), and behavioral effects of chronic treatment with a non-convulsive dose of pilocarpine, in adult rats suckled under favorable and unfavorable conditions.Methods: Wistar rats were suckled in litters with 9 or 15 pups (groups L9 and L15, respectively). A very low dose of pilocarpine (45/mg/kg/day) was chronically administered in mature rats from postnatal day (PND) 69-90. Behavioral tests occurred at PND91 [elevated plus maze (EPM)], PND93 [open field (OF)], and PND94-95 [object recognition memory (ORM)]. CSD was recorded between PND96-120.Results: Pilocarpine-treated rats performed worse in the anxiety and memory tests, and displayed lower CSD propagation velocity when compared with saline-treated controls. In addition, L15 rats showed an increase in the distance traveled and a decrease in the immobility time in the EPM, impaired ORM, and accelerated CSD propagation when compared with L9 rats (p ≤ 0.05).Discussion: These data suggest that sub-convulsive pilocarpine treatment in adult rats can affect behavioral and excitability-related reactions. In addition, unfavorable lactation increases the ambulatory effects of pilocarpine. Further studies should investigate the possible cholinergic molecular mechanisms involved in these effects.
Collapse
Affiliation(s)
| | | | - Camila Lima Chagas
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Clara Farah de Lima
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
3
|
Amaral de Brito AP, Galvão de Melo IMDS, El-Bachá RS, Guedes RCA. Valeriana officinalis Counteracts Rotenone Effects on Spreading Depression in the Rat Brain in vivo and Protects Against Rotenone Cytotoxicity Toward Rat Glioma C6 Cells in vitro. Front Neurosci 2020; 14:759. [PMID: 32792901 PMCID: PMC7390944 DOI: 10.3389/fnins.2020.00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes can protect neurons against oxidative stress and excitability-dependent disorders, such as epilepsy. Valeriana officinalis has been used as anticonvulsant and can exert an antioxidant effect, which may underlie its opposing action against the toxic effects of the pesticide rotenone. We investigated the V. officinalis/rotenone interaction in the cortical spreading depression (CSD), a phenomenon that depends upon brain excitability (in vivo model). In addition, we analyzed the protective action of V. officinalis against the cytotoxic effects of rotenone in cultures of rat C6 glioma cells (in vitro model). For the CSD study, Wistar rats received either V. officinalis (250 mg/kg/day via gavage for 15 days; n = 8) or 10 mg/kg/day rotenone via subcutaneous injections for 7 days (n = 7), or they received both substances (n = 5). Two control groups received either saline (vehicle for V. officinalis; n = 8) or 1% Tween-80 aqueous solution (vehicle for rotenone; n = 9). After treatment, CSD was recorded for 4 h. The rotenone- and V. officinalis-treated groups presented, respectively, with lower (2.96 ± 0.14 mm/min), and higher CSD propagation velocity (3.81 ± 0.10 mm/min) when compared with the controls (Tween-80, 3.37 ± 0.06 mm/min and saline, 3.35 ± 0.08 mm/min; p < 0.05). The rotenone plus V. officinalis-treated group displayed a CSD velocity (3.38 ± 0.07 mm/min) that was similar to controls. In line with these results, in vitro experiments on rat glioma C6 cells revealed a protective effect (MTT assay) of V. officinalis against rotenone-induced cytotoxicity. These results suggest the therapeutic potential of V. officinalis for treating neurological diseases involving redox imbalance and astrocyte dysfunction.
Collapse
Affiliation(s)
| | | | - Ramon Santos El-Bachá
- Department of Biochemistry and Biophysics, Universidade Federal da Bahia, Salvador, Brazil
| | | |
Collapse
|
4
|
Francisco EDS, Mendes-da-Silva RF, de Castro CBL, Soares GDSF, Guedes RCA. Taurine/Pilocarpine Interaction in the Malnourished Rat Brain: A Behavioral, Electrophysiological, and Immunohistochemical Analysis. Front Neurosci 2019; 13:981. [PMID: 31619952 PMCID: PMC6759493 DOI: 10.3389/fnins.2019.00981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/30/2019] [Indexed: 12/05/2022] Open
Abstract
This study aimed to evaluate the possible protective role of taurine on anxiety-like behavior, brain electrical activity and glial cell immunoreactivity in well-nourished and malnourished rats that were treated with a subconvulsing dose of pilocarpine. Newborn Wistar rats were subjected to normal or unfavorable lactation conditions, represented by the suckling of litters with 9 or 15 pups, resulting in well-nourished and malnourished animals, respectively. Each nutritional group was split into five subgroups that were treated from postnatal day (PND) 35 to 55 with 300 mg/kg/day of taurine + 45 mg/kg/day of pilocarpine (group T + P), taurine only (group T), pilocarpine only (group P), vehicle control (group V), or not treated control (group naïve; Nv). At PND56-58, the groups were subjected to the elevated plus-maze behavioral tests. Glycemia was measured on PND59. Between PND60 and PND65, the cortical spreading depression (CSD) was recorded in the cerebral cortex, and the levels of malondialdehyde and microglial and astrocyte immunoreactivity were evaluated in the cortex and hippocampus. Our data indicate that treatment with taurine and pilocarpine resulted in anxiolytic-like and anxiogenic behavior, respectively, and that nutritional deficiency modulated these effects. Both treatments decelerated CSD propagation and modulated GFAP- and Iba1-containing glial cells. Pilocarpine reduced body weight and glycemia, and administration of taurine was not able to attenuate the effects of pilocarpine. The molecular mechanisms underlying taurine action on behavioral and electrophysiological parameters in the normal and altered brain remain to be further explored.
Collapse
|
5
|
Guedes RCA, Abadie-Guedes R. Brain Aging and Electrophysiological Signaling: Revisiting the Spreading Depression Model. Front Aging Neurosci 2019; 11:136. [PMID: 31231207 PMCID: PMC6567796 DOI: 10.3389/fnagi.2019.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
As a consequence of worldwide improvement in health care, the aging portion of the human population has increased, now representing a higher proportion of the total population. This fact raises great concern regarding how to age while maintaining good brain function. Very often, alterations in brain electrophysiological signaling are associated with age-dependent functional disorders of the brain. Therefore, animal models suitable for the study of age-related changes in electrical activity of the brain can be very useful. Herein, we review changes in brain electrophysiological features as a function of age by analyzing studies in the rat brain on the phenomenon known as cortical spreading depression (CSD). Alterations in the brain’s capability to generate and propagate CSD may be related to differences in the propensity to develop certain neurological diseases, such as epilepsy, stroke, and migraine, which can biunivocally interact with the aging process. In this review, we revisit ours and others’ previous studies on electrophysiological features of the CSD phenomenon, such as its velocity of propagation and amplitude and duration of its slow negative DC shift, as a function of the animal age, as well as the interaction between age and other factors, such as ethanol consumption, physical exercise, and nutritional status. In addition, we discuss one relatively new feature through which CSD modulates brain signaling: the ability to potentiate the brain’s spontaneous electrical activity. We conclude that the CSD model might importantly contribute to a better understanding of the aging/brain signaling relationship.
Collapse
Affiliation(s)
| | - Ricardo Abadie-Guedes
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Long lasting behavioral and electrophysiological action of early administration of guanosine: Analysis in the adult rat brain. Brain Res Bull 2019; 150:266-271. [PMID: 31181322 DOI: 10.1016/j.brainresbull.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Guanosine (GUO) is a guanine-based purine that has been extensively described in the literature as an endogenous nucleoside with participation in brain cell signalling pathways. Here, we evaluated whether chronic treatment with exogenous guanosine during brain development altered behavioral and electrophysiological parameters in adulthood. Rat pups received a daily intraperitoneal injection of 10, 50 or 100 mg/ kg/day GUO, or saline solution or no treatment (naive group) from postnatal (P) day 7 to P27. At P 60-65 the animals were behaviorally tested in the Elevated Plus-Maze (EPM). On P90-100, the electrophysiological phenomenon known as cortical spreading depression (CSD) was recorded on the right cortical surface for 4 h. With the EPM task, GUO treatment was associated with a significant increase in rearing behavior and a non-significant trend towards anxiogenic behavior. In a dose-dependent manner, GUO significantly (p < 0.01) increased weight gain on P90, and reduced the CSD propagation velocity from 3.42 ± 0.10 and 3.43 ± 0.10 mm/min in the Naive and Vehicle controls, respectively, to 3.05 ± 0.12 mm/min, 2.87 ± 0.07 mm/min and 2.25 ± 0.25 mm/min in the groups treated with 10, 50 and 100 mg/kg/d GUO, respectively. The results confirmed the hypothesis that the chronic treatment with GUO early in life modulates CSD and body weight. Data on CSD propagation suggest that, besides its suppressing action on glutamatergic transmission (via enhancement of astrocytic glutamate uptake), GUO might act as an antioxidant in the brain, a hypothesis that deserves further exploration.
Collapse
|
7
|
Francisco EDS, Guedes RCA. Sub-Convulsing Dose Administration of Pilocarpine Reduces Glycemia, Increases Anxiety-Like Behavior and Decelerates Cortical Spreading Depression in Rats Suckled on Various Litter Sizes. Front Neurosci 2018; 12:897. [PMID: 30559645 PMCID: PMC6287009 DOI: 10.3389/fnins.2018.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.
Collapse
|