1
|
Celikkol R, Ersoy S, Cavus O, Pala E, Engin VS. Wet cupping therapy and acupuncture applications in migraine patients: A randomized controlled trial. Explore (NY) 2025; 21:103158. [PMID: 40188533 DOI: 10.1016/j.explore.2025.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
AIM Although there are numerous complementary treatments for migraine, comparisons among themselves are relatively rare. This study aimed to investigate and compare the effectiveness of wet cupping therapy (WCT) and acupuncture applications in treating migraine patients. MATERIALS AND METHOD This was a randomized controlled clinical trial conducted between 01.03.2022 and 01.10.2023 in the Traditional and Complementary Medicine Center of a tertiary hospital. Patients diagnosed with migraine were included in the study and randomized into three arms. The WCT group received cupping 3 times, once a month. The acupuncture group received 10 sessions of acupuncture once a week. The waiting list was assigned as the control group. VAS and MIDAS scales were applied to all groups at the beginning and the end of the treatment, and the results were compared. RESULTS All three groups were similar regarding age and sex. Migraine Disability Assessment Scale (MIDAS) and Visual Analogue Scale (VAS) pain scores decreased significantly in both treatment groups after the applications, while they remained similar for the same period in the control group. Additionally, the post-treatment values of MIDAS and VAS in both the WCT and acupuncture groups were significantly lower compared to controls, while they were similar when compared in between. CONCLUSION Both of these applications were found to be similarly effective in improving disability status and pain intensity in patients with migraine.
Collapse
Affiliation(s)
- Rana Celikkol
- Department of Traditional and Complementary Medicine, University of Health Sciences Turkiye, Hamidiye Health Sciences Institute, Umraniye Training and Research Hospital, Istanbul, Turkiye.
| | - Suleyman Ersoy
- Department of Family Medicine, University of Health Sciences Turkiye, Hamidiye Medical Faculty, Umraniye Training and Research Hospital, Istanbul, Turkiye
| | - Osman Cavus
- Department of Family Medicine, University of Health Sciences Turkiye, Hamidiye Medical Faculty, Umraniye Training and Research Hospital, Istanbul, Turkiye
| | - Emin Pala
- Department of Family Medicine, University of Health Sciences Turkiye, Hamidiye Medical Faculty, Umraniye Training and Research Hospital, Istanbul, Turkiye
| | - Velittin Selcuk Engin
- Department of Family Medicine, University of Health Sciences Turkiye, Hamidiye Medical Faculty, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkiye
| |
Collapse
|
2
|
Xie T, Liu C, Wu Y, Li X, Yang Q, Tan J. Efficacy and Safety of Different Acupuncture Treatments for Cancer-Related Pain: A Systematic Review and Network Meta-Analysis. Integr Cancer Ther 2025; 24:15347354251314500. [PMID: 39873173 PMCID: PMC11773549 DOI: 10.1177/15347354251314500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Cancer pain is a prevalent and persistent issue, and while there have been some observations of the possible benefits of acupuncture in managing cancer pain, there is still debate regarding its safety and effectiveness. This study aims to compare the efficacy and safety of different acupuncture modalities in the treatment of cancer pain through a network meta-analysis. METHODS Between the time each database was created and June 3, 2024, eight databases were queried: PubMed, Cochrane, Embase, Web of Science, CNKI, Wanfang, VIP, and China Biomedicine. Randomized controlled trials investigating the use of various acupuncture and moxibustion techniques in the treatment of cancer pain were identified. Publication bias and quality of randomized controlled trials were assessed using the Cochrane Risk of Bias tool and the Jadad scale, and network meta-analyses were performed using Stata 15 and R 4.3.2. RESULTS We incorporated 111 studies encompassing 9549 individuals diagnosed with cancer, examining 29 distinct therapies. Network meta-analysis showed that, compared to Usual Medicine, Acupuncture + Usual Medicine + Traditional Chinese medicine (MD = -1.83, 95% CI: -2.86 to -0.80) could reduce NRS scores, Acupuncture + Traditional Chinese medicine (OR = 30.86, 95% CI: 3.75-254.20) could improve cancer pain relief, Moxibustion + Usual Medicine (MD = 2.12, 95% CI: 0.43-3.80) could effectively improve KPS score, Acupuncture + Application of Chinese medicine (OR = 0.16, 95% CI: 0.04-0.66) is associated with a lower incidence of constipation, Electro-Acupuncture + Usual Medicine (OR = 0.11, 95% CI: 0.03-0.45) shows a lower incidence of nausea and vomiting, Acupuncture + Moxibustion + Usual Medicine (OR = 0.29, 95% CI: 0.09-0.90) is associated with a lower incidence of dizziness. CONCLUSION Acupuncture + Traditional Chinese medicine is the best intervention for different acupuncture methods in the treatment of cancer pain, and Moxibustion + Usual Medicine is the best intervention to improve the quality of life of patients.
Collapse
Affiliation(s)
- Tianle Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Can Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yudi Wu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiuxiu Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qianyun Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Zhang Z, Cui X, Liu K, Gao X, Zhou Q, Xi H, Zhao Y, Zhang D, Zhu B. Adrenal sympathetic nerve mediated the anti-inflammatory effect of electroacupuncture at ST25 acupoint in a rat model of sepsis. Anat Rec (Hoboken) 2023; 306:3178-3188. [PMID: 36300612 DOI: 10.1002/ar.25102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Acupuncture plays a vital anti-inflammatory action in sepsis by activating autonomic nerve anti-inflammatory pathways, such as sympathoadrenal medullary pathway, but the mechanism remains unclear. This study aims to explore the optimum parameter of electroacupuncture (EA) stimulation in regulating the sympathoadrenal medullary pathway and evaluate EA's anti-inflammatory effect on sepsis. To determine the optimum parameter of EA at homotopic acupoint on adrenal sympathetic activity, the left adrenal sympathetic nerve firing rate evoked by different intensities of single shock electrical stimulation (ES) at ST25 in healthy male Sprague-Dawley rats were evaluated by in vivo electrophysiological recording, and the levels of norepinephrine (NE) and its metabolites normetanephrine (NMN) were also examined using mass spectrometry. To verify the role of EA at ST25 in sepsis, the rats were given an intraperitoneal injection of lipopolysaccharide (LPS) to induce sepsis model, and survival rate, clinical score, and the level of interleukin (IL)-6, IL-1β, and IL-10 were evaluated after EA application. We observed that 3 mA is the optimal intensity for activating adrenal sympathetic nerve, which significantly elevated the level of NE in the peripheral blood. For LPS-treated rats, EA at the ST25 apparently increased the survival rate and improved the clinical score compared to the control group. Furthermore, 3 mA EA at ST25 significantly decreased pro-inflammatory cytokines IL-6 and IL-1β and upregulated anti-inflammatory cytokine IL-10 compared to the LPS-treated group. Overall, our data suggested that 3 mA is the optimal EA intensity at ST25 to activate the sympathoadrenal medullary pathway and exert an anti-inflammatory effect in sepsis.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingchen Zhou
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture-moxibustion and Tuina Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dingdan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zheng Y, Pan L, He J, Yan J, Xia Y, Lin C, Chen X, Zhao Q, Zeng Q, Julikezi M, Lin X, Li K, Bu Y, Fan Y, Yao L, Zhang M, Chen Y. Electroacupuncture-modulated extracellular ATP levels in prefrontal cortex ameliorated depressive-like behavior of maternal separation rats. Behav Brain Res 2023; 452:114548. [PMID: 37355234 DOI: 10.1016/j.bbr.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Maternal separation (MS) is a type of early-life stress that has been linked to neuropsychiatric disorders, especially depression. Increasing evidence indicates that the adenosine triphosphate (ATP) level in the prefrontal cortex (PFC) is involved in the pathophysiology of depression. To investigate the potential relationship between ATP in PFC and antidepressant effects of electroacupuncture (EA) treatment, we assessed genes involved in ATP biosynthesis as well as the extracellular ATP levels in a rat model exposed to neonatal MS. Our results demonstrated that reduced expression of ABCG2 (an ATP-binding cassette protein) and ATP levels in the PFC of depressive-like rats exposed to MS can be attenuated by EA stimulus at the Baihui (GV20) and Yintang (GV29) acupoints. Moreover, the antidepressant effect of EA treatment was blocked by administration of suramin, a broad purinergic P2 receptor antagonist. Together, these results suggested that electroacupuncture may be able to modulate extracellular ATP levels in the PFC of depressive-like MS rats, potentially contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Pan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiang He
- Acupuncture and moxibustion and tuina college, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuqi Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianyi Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuxiang Zeng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maidinaimu Julikezi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaixin Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Bu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujing Fan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
5
|
Wang Y, Yang L, Wu Y. Case report: Cheek acupuncture exhibits an immediate effect in relieving severe pain associated with nerve compression or damage of central nervous system and its potential mechanism of action. Front Neurosci 2023; 17:1211361. [PMID: 37547149 PMCID: PMC10400715 DOI: 10.3389/fnins.2023.1211361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 08/08/2023] Open
Abstract
Peripheral nerve compression or permanent damage of central nervous system (CNS) can trigger severe neuralgia to patients. Analgesic medicine or even surgery to remove nerve compression is commonly used for pain relief. But these treatments either are ineffective, have side-effect or can cause subsequent complications. Acupuncture, a technique that has been widely used in China and other Asian countries for thousands of years, is an alternative to relieve pain, although the mechanism of action is not fully understood. In this study, two patients who had symptoms of severe neuralgia associated with peripheral nerve compression or permanent damage/dysfunction of CNS and analgesic medicines are ineffective, underwent cheek acupuncture, a new technique established recent years by the author with the features of painless, standardization, simplicity, and precision. An immediate analgesic effect of the cheek acupuncture was observed without any side effects, and clinical remission was achieved after several sessions of treatments. It suggests that this new approach is an efficient alternative for pain relief induced by nerve impairment. The authors proposed a biological holographic model of triplet homunculi existing at the level of the local cheek, spinal cord, and cerebral cortex, to explain the immediate and accurate analgesic effect of the cheek acupuncture. These homunculi have the same structure, and synchronized sensations and actions that are mediated by afferent and efferent neurons, as the integrated human body. Therefore, the nociception and needling signals are sensed, transmitted, analyzed, and manipulated cooperatively and simultaneously among these homunculi with the subsequent pain relief in the body.
Collapse
Affiliation(s)
- Yongzhou Wang
- International Cheek Acupuncture Therapy Institute, Fontenay-sous-Bois, France
| | - Lu Yang
- Department of Anesthesiology, Beijing United Family Hospital, Beijing, China
| | - Yongzheng Wu
- Unité de Biologie Cellulaire & Infection Microbienne, CNRS UMR3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Gu YJ, Qian HY, Zhou F, Zhang L, Chen L, Song Y, Chen YN, Zhang HL. Folic acid relieves bone cancer pain by downregulating P2X2/3 receptors in rats. Brain Res 2023; 1811:148405. [PMID: 37164174 DOI: 10.1016/j.brainres.2023.148405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bone cancer pain (BCP) remains a clinical challenge due to the limited and side effects of therapeutic methods. Folic acid has been known as an FDA approved dietary supplement and proved to have an analgesic effect in neuropathic pain. Here we investigate the role and mechanism of folic acid in bone cancer pain of a rat model. METHODS Walker 256 tumor cells were inoculated into the left tibia of rats to induce bone cancer pain model. Pain reflex were assessed by paw withdrawal threshold (PWT) response to Von Frey filaments and paw withdrawal latency (PWL) response to thermal stimulation. Folic acid was injected intraperitoneally to evaluate its analgesic effect in rats with bone cancer pain. Western blotting and qPCR were used to determine P2X2/3 receptor protein and mRNA levels in ipsilateral L4-6 dorsal root ganglion (DRG) and spinal dorsal horn (SDH). RESULTS The PWT and PWL of rats with bone cancer pain were obviously decreased compared to the naïve and sham rats. Interestingly, continuous folic acid treatment significantly increased the PWT and PWL of rats with bone cancer pain. P2X2 and P2X3 receptors were clearly upregulated at both mRNA and protein expression in L4-6 DRG and SDH of rats with bone cancer pain. P2X2 and P2X3 receptors were mainly localized with CGRP (calcitonin gene-related peptide) or IB4 (isolectin B4) positive neurons in L4-6 DRG of rats with bone cancer pain. Notably, continuous folic acid treatment significantly reduced the expression of P2X2 and P2X3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Finally, intrathecal injection of A317491 (a selective antagonist of P2X2/3 receptors) markedly elevated the PWT and PWL of rats with bone cancer pain. CONCLUSION These results suggest that folic acid has an effective antinociceptive effect on bone cancer pain, which is mediated by downregulating P2X2/3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Folic acid may be a novel therapeutic strategy in cancer patients for pain relief.
Collapse
Affiliation(s)
- Yong-Juan Gu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - He-Ya Qian
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Fang Zhou
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Long Chen
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Yu Song
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ya-Nan Chen
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Hai-Long Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Tian SX, Xu T, Shi RY, Cai YQ, Wu MH, Zhen SJ, Wang W, Zhou Y, Du JY, Fang JF, Shao XM, Liu BY, Jiang YL, He XF, Fang JQ, Liang Y. Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor. Purinergic Signal 2023; 19:13-27. [PMID: 35478452 PMCID: PMC9984641 DOI: 10.1007/s11302-022-09861-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.
Collapse
Affiliation(s)
- Shu-Xin Tian
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ting Xu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ren-Yi Shi
- Department of Acupuncture and Moxibustion, Sanya Traditional Chinese Medicine Hospital, Sanya, 572000, China
| | - Yang-Qian Cai
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ming-Hui Wu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Si-Jia Zhen
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - You Zhou
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China. .,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
8
|
Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2023; 19:43-53. [PMID: 35389158 PMCID: PMC9984627 DOI: 10.1007/s11302-021-09830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022] Open
Abstract
This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.
Collapse
|
9
|
Yu L, Wang Y, Zhang H, Li M, Chen G, Hao J, Xie M. Involvement of purinergic P2Y1R in antidepressant-like effects of electroacupuncture treatment on social isolation stress mice. Purinergic Signal 2023; 19:55-68. [PMID: 35094240 PMCID: PMC9984636 DOI: 10.1007/s11302-021-09827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is a common neuropsychiatric disorder with high incidence and disability. Electroacupuncture (EA) is effective in the treatment of depression. However, the underlying mechanisms are not fully understood. Social isolation stress during post-weaning period can impair purinergic signaling in the brain of rodents and has emerged as a major risk factor for depression. The purpose of this study was to investigate the involvement of P2Y1 receptor (P2Y1R) in the antidepressant-like effects of EA. In this study, C57BL/6 mice were randomly assigned to group-housed (GH) or social isolated (SI) groups at post-natal day 21. After 6 weeks of social isolation, EA was performed on acupoints "Bai-hui" (GV20) and "Yin-tang" (GV29), or non-acupoints for 4 weeks. The SI mice received either intracerebroventricular injection of a selective P2Y1R agonist, MRS2365 (1 nmol); or a selective P2Y1R antagonist, MRS2179 (2 μmol), before and after EA. We found that SI mice exhibited depression-like behaviors accompanied with anxiety-like behaviors. The expressions of P2Y1R were well co-localized with GFAP-positive astrocytes and increased in the prefrontal cortex and hippocampus of SI mice. After treated with MRS2179, the depression-like behaviors of SI mice were attenuated, but not with MRS2365. Meanwhile, we found that EA could attenuate social isolation caused depression- and anxiety-like behaviors, and inhibited the up-regulation of P2Y1R in the prefrontal cortex and hippocampus of SI mice. Notably, the positive effects of EA on depression-like behaviors of SI mice could be reversed by MRS2365, while MRS2365 had no effect on the anxiolytic-like effects of EA. Therefore, we provide new evidence that EA could ameliorate depression- and anxiety-like behaviors in social isolation stress mice, and P2Y1R was involved in the antidepressant-like effects of EA.
Collapse
Affiliation(s)
- Lingling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Yin HY, Fan YP, Liu J, Li DT, Guo J, Yu SG. Purinergic ATP triggers moxibustion-induced local anti-nociceptive effect on inflammatory pain model. Purinergic Signal 2023; 19:5-12. [PMID: 34378078 PMCID: PMC9984580 DOI: 10.1007/s11302-021-09815-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund's adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.
Collapse
Affiliation(s)
- Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| | - Ya-Peng Fan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Juan Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dao-Tong Li
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Jing Guo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shu-Guang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
11
|
Changes in Acupuncture-Induced Specific Acupoint Neurotransmitters are Possibly Related to Their Physiological Functions in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4849528. [PMID: 36865739 PMCID: PMC9974273 DOI: 10.1155/2023/4849528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
This study investigated changes in neurotransmitters induced by the application of electroacupuncture (EA) at Zusanli (ST36) and Neiguan (PC6). A total of 30 rats were divided into five groups: sham, ST (EA at bilateral ST36 and ST37), ScT (ST plus previous neurectomy of the bilateral sciatic nerves), ScS (sham plus previous neurectomy of the bilateral sciatic nerve), and PC (EA at bilateral PC6 and PC7). The P2X2 receptor expression was stronger in the sham group than in the ST and PC groups (both p < 0.05) but similar between the sham and ScT groups (p > 0.05). Dopamine levels in the extracellular fluid surrounding the acupoints were higher in the PC group than in the sham and ST groups during the postacupuncture period (both p < 0.05). Glutamate levels in the extracellular fluid surrounding the acupoints were higher in the ST group than in the sham group during the acupuncture period (p < 0.05) and higher in the ST group than in the sham and PC groups during the postacupuncture period (both p < 0.05). Serum adrenaline and noradrenaline levels were higher in the PC group than in the sham, ST, and ScT groups (all p < 0.05). Glutamate levels in the CSF were higher in the ST group than in the sham, ScS, and PC groups (all p < 0.05). GABA levels in the CSF were higher in the ST group than in the sham, ScT, and PC groups (all p < 0.05). EA at ST36 and ST37 and PC6 and PC7 exerted an analgesic effect, EA at PC6 and PC7 can enhance heart function, and EA at ST36 and ST37 modulates the cerebral cortex. However, the study needs an evaluation of direct pain behavior, heart function, and brain function in the future.
Collapse
|
12
|
Chen Y, Li D, Li N, Loh P, Guo Y, Hu X, Zhang J, Dou B, Wang L, Yang C, Guo T, Chen S, Liu Z, Chen B, Chen Z. Role of nerve signal transduction and neuroimmune crosstalk in mediating the analgesic effects of acupuncture for neuropathic pain. Front Neurol 2023; 14:1093849. [PMID: 36756246 PMCID: PMC9899820 DOI: 10.3389/fneur.2023.1093849] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Neurogenic pain rises because of nervous system damage or dysfunction and is the most difficult to treat among other pathological pains. Acupuncture has been reported as a great treatment option for neurogenic pain owing to its unlimited advantages. However, previous studies on the analgesic effects of acupuncture for NP were scattered and did not form a whole. In this study, we first comprehensively review the relevant basic articles on acupuncture for NP published in the last 5 years and summarize the analgesic mechanisms of acupuncture in terms of nerve signaling, neuro-immune crosstalk, and metabolic and oxidative stress regulation. Acupuncture inhibits the upstream excitatory system and suppresses neuronal transmission efficiency by downregulating glutamate, NMDA receptors, P2XR, SP, CGRP, and other neurotransmitters and receptors in the spinal cord, as well as plasma channels such as TRPV1, HCN. It can also activate the downstream pain inhibitory pathway by upregulating opioid peptide (β-endorphin), MOR receptors, GABA and GABA receptors, bi-directional regulating 5-hydroxytryptamine (5-HT) and its receptors (upregulate 5-HT 1A and downregulate 5-HT7R) and stimulating hypothalamic appetite-modifying neurons. Moreover, neuroinflammation in pain can be inhibited by acupuncture through inhibiting JAK2/STAT3, PI3K/mTOR pathways, down regulating chemokine receptor CX3CR1 on microglia and up regulating adenosine receptor A1Rs on astrocytes, inhibiting the activation of glia and reducing TNF-α and other inflammatory substances. Acupuncture also inhibits neuronal glucose metabolism by downregulating mPFC's GLUT-3 and promotes metabolic alterations of the brain, thus exerting an analgesic effect. In conclusion, the regulation of nerve signal transduction and neuroimmune crosstalk at the peripheral and central levels mediates the analgesic effects of acupuncture for neuropathic pain in an integrated manner. These findings provide a reliable basis for better clinical application of acupuncture in the management of neuropathic pain.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifen Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaobo Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Zelin Chen ✉
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Bo Chen ✉
| |
Collapse
|
13
|
Tang Y, Rubini P, Yin HY, Illes P. Acupuncture for Counteracting P2X4 and P2X7 Receptor Involvement in Neuroinflammation. PURINERGIC SIGNALING IN NEURODEVELOPMENT, NEUROINFLAMMATION AND NEURODEGENERATION 2023:359-374. [DOI: 10.1007/978-3-031-26945-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zhang Q, Zhou M, Huo M, Si Y, Zhang Y, Fang Y, Zhang D. Mechanisms of acupuncture-electroacupuncture on inflammatory pain. Mol Pain 2023; 19:17448069231202882. [PMID: 37678839 PMCID: PMC10515556 DOI: 10.1177/17448069231202882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Acupuncture, as a traditional treatment, has been extensively used in China for thousands of years. According to the World Health Organization (WHO), acupuncture is recommended for the treatment of 77 diseases. And 16 of these diseases are related to inflammatory pain. As a combination of traditional acupuncture and modern electrotherapy, electroacupuncture (EA) has satisfactory analgesic effects on various acute and chronic pain. Because of its good analgesic effects and no side effects, acupuncture has been widely accepted all over the world. Despite the increase in the number of studies, the mechanisms via which acupuncture exerts its analgesic effects have not been conclusively established. A literature review of related research is of great significance to elaborate on its mechanisms and to inform on further research directions. We elucidated on its mechanisms of action on inflammatory pain from two levels: peripheral and central. It includes the mechanisms of acupuncture in the periphery (immune cells and neurons, purinergic pathway, nociceptive ion channel, cannabinoid receptor and endogenous opioid peptide system) and central nervous system (TPRV1, glutamate and its receptors, glial cells, GABAergic interneurons and signaling molecules). In this review, we collected relevant recent studies to systematically explain the mechanisms of acupuncture in treating inflammatory pain, with a view to providing direction for future applications of acupuncture in inflammatory pain and promoting clinical development.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Sun R, Li S, Ren L, Xia Y, Wang Y, Bian Z, Fang J, Zhang Z. Efficacy of Electroacupuncture for the Treatment of Postherpetic Neuralgia: Study Protocol for a Multicenter Randomized Controlled Trial. J Pain Res 2022; 15:959-968. [PMID: 35411183 PMCID: PMC8994622 DOI: 10.2147/jpr.s357435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/19/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ruohan Sun
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shimin Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Leilei Ren
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yunfan Xia
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiyi Wang
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhiyuan Bian
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianqiao Fang
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Jianqiao Fang, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 23 Qinchun Road, Hangzhou, Zhejiang, People’s Republic of China, Email
| | - Zuyong Zhang
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Zuyong Zhang, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, No. 38 West Lake Road, Hangzhou, Zhejiang, People’s Republic of China, Email
| |
Collapse
|
16
|
Wang LN, Wang XZ, Li YJ, Li BR, Huang M, Wang XY, Grygorczyk R, Ding GH, Schwarz W. Activation of Subcutaneous Mast Cells in Acupuncture Points Triggers Analgesia. Cells 2022; 11:809. [PMID: 35269431 PMCID: PMC8909735 DOI: 10.3390/cells11050809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
This review summarizes experimental evidence indicating that subcutaneous mast cells are involved in the trigger mechanism of analgesia induced by acupuncture, a traditional oriental therapy, which has gradually become accepted worldwide. The results are essentially based on work from our laboratories. Skin mast cells are present at a high density in acupuncture points where fine needles are inserted and manipulated during acupuncture intervention. Mast cells are sensitive to mechanical stimulation because they express multiple types of mechanosensitive channels, including TRPV1, TRPV2, TRPV4, receptors and chloride channels. Acupuncture manipulation generates force and torque that indirectly activate the mast cells via the collagen network. Subsequently, various mediators, for example, histamine, serotonin, adenosine triphosphate and adenosine, are released from activated mast cells to the interstitial space; they or their downstream products activate the corresponding receptors situated at local nerve terminals of sensory neurons in peripheral ganglia. The analgesic effects are thought to be generated via the reduced electrical activities of the primary sensory neurons. Alternatively, these neurons project such signals to pain-relevant regions in spinal cord and/or higher centers of the brain.
Collapse
Affiliation(s)
- Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Xue-Zhi Wang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Bing-Rong Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China;
| | - Xiao-Yu Wang
- Laboratory of Immunology and Virology, Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Wolfgang Schwarz
- Institute for Biophysics, Department of Physics, Goethe-University Frankfurt, Max-von-Laue St. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Influence of Acupuncture on Microcirculation Perfusion of Pericardium Meridian and Heart in Acute Myocardial Ischemia Model Rats. Chin J Integr Med 2021; 28:69-75. [PMID: 34816366 DOI: 10.1007/s11655-021-3294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To observe the influence of acupuncture on microcirculation perfusion of the pericardium meridian and heart in acute myocardial ischemia (AMI) rats and evaluate whether acupuncture can simultaneously affect the meridians and corresponding viscera. Additionally, acupoints at different meridians were compared and whether they exert the same effects was discussed. METHODS Totally 32 Sprague-Dawley rats were subjected to left anterior descending (LAD) ligation to develop an AMI model. Rats were divided into 4 groups, including AMI, acupuncture Neiguan (PC 6), Lieque (LU 7) and Qiansanli (LI 10) groups (n=8). Eight rats received only thoracotomy (sham-operated group). The rats in the acupuncture groups received manual acupuncture at PC 6, LU 7 and LI 10 acupoints for 15 min, respectively. The microcirculation perfusion of pericardium meridian and heart was monitored by laser speckle perfusion imager (LSPI) before, during and after acupuncture manipulation for 15 min. Subsequently, the perfusion unit (PU) was calculated and analyzed by PSI System. RESULTS After LAD, compared to pre-acupuncture stage, the heart microcirculation perfusion (HMP) in the AMI group decreased continuously at during-acupuncture (P>0.05) and post-acupuncture stages (P<0.05), and the pericardium meridian microcirculation perfusion (PMP) showed no significant differences at 3 stages (P>0.05). Compared to pre-acupuncture stage, the PMP and HMP in PC 6 group significantly increased during acupuncture manipulation (both P<0.05), and PMP decreased obviously after acupuncture (P<0.05). The PMP in the LU 7 and LI 10 groups were slightly elevated (both P>0.05); however, they were significantly reduced after acupuncture manipulation (both P<0.05). Additionally, HMP of LI 10 group was decreased significantly during acupuncture, especially compared to pre-acupuncture stage (P<0.05). CONCLUSIONS Acupuncture at PC 6 obviously increased the PMP and HMP in AMI rats, and the effects were superior to at LU 7 and LI 10 acupoints. It was further confirmed that acupuncture promoted qi and blood circulation, indicating that acupoint specificity exists and features a meridian-propagated effect.
Collapse
|
18
|
Tahir AH, Li JJ, Tang Y. Peripheral and Spinal Mechanisms Involved in Electro-Acupuncture Therapy for Visceral Hypersensitivity. Front Neurosci 2021; 15:696843. [PMID: 34658755 PMCID: PMC8511820 DOI: 10.3389/fnins.2021.696843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
One of the important characteristic features of clinically significant gastrointestinal disorders is visceral hypersensitivity (VH). Pain sensitization or VH is a big challenge for clinicians and becomes a very thorny work in clinical practices; the therapeutic efficacy for VH results in limited success. A popular second therapy that is being approved for the induction of analgesia and attenuates VH with fewer side effects includes electro-acupuncture (EA). Different peripheral and spinal neurological chemicals, including neurotransmitters, neuropeptides, and cytokines, and different signaling pathways were associated with EA treatment in VH. Despite the higher acceptance of EA, the underlying mechanism still needs to be further explored. In this paper, we review the available literature to find the peripheral and spinal mechanisms involved in EA to relieve VH.
Collapse
Affiliation(s)
- Adnan Hassan Tahir
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jia-Jia Li
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
19
|
Yin C, Shen W, Zhang M, Wen L, Huang R, Sun M, Gao Y, Xiong W. Inhibitory Effects of Palmatine on P2X7 Receptor Expression in Trigeminal Ganglion and Facial Pain in Trigeminal Neuralgia Rats. Front Cell Neurosci 2021; 15:672022. [PMID: 34366788 PMCID: PMC8339261 DOI: 10.3389/fncel.2021.672022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Trigeminal Neuralgia (TN) refers to recurrent severe paroxysmal pain in the distribution area of the trigeminal nerve, which seriously affects the quality of life of patients. This research applied the chronic constriction injury of the infraorbital nerve (CCI—ION) approach to induce an animal model of TN in rats. The mechanical pain threshold of each group of rats was determined postoperatively; the expression of P2X7 receptor in trigeminal ganglion (TG) was assessed by qRT-PCR, immunofluorescence and Western blot; and the changes of the proinflammatory cytokines IL-1β and TNF-α in serum of rats were detected by ELISA. The results showed that the administration of palmatine in the TN rats could reduce the mechanical pain threshold, significantly decrease the expression of P2X7 receptor in TG, and lower the serum concentrations of IL-1β and TNF-α, compared to the sham group. In addition, the phosphorylation level of p38 in TG of TN rats was significantly decreased after treatment with palmatine. Likewise, inhibition of P2X7 expression by shRNA treatment could effectively counteract the adversary changes of pain sensitivity, IL-1β and TNF-α production, and p38 phosphorylation in TN rats. Our data suggest that palmatine may alleviate mechanical facial pain in TN rats possibly by reducing the expression of P2X7 receptor in TG of TN rats, which may be attributable to inhibiting p38 phosphorylation and reducing the release of IL-1β and TNF-α.
Collapse
Affiliation(s)
- Cancan Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,Hangzhou Stomatology Hospital, Hangzhou, China
| | - Wenhao Shen
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Mingming Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Lequan Wen
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang, China
| | - Ruoyu Huang
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Mengyun Sun
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, China
| |
Collapse
|
20
|
Bae SJ, Ji JY, Oh JY, Won J, Ryu YH, Lee H, Jung HS, Park HJ. The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2021; 22:1560-1577. [PMID: 34182104 DOI: 10.1016/j.jpain.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/08/2021] [Accepted: 06/05/2021] [Indexed: 01/28/2023]
Abstract
While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P < .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P < .001), which was found essential in MA (P < .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE: This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Yeon Ji
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoon Won
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Hee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 5'-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors (ARs), but safely harnessing this pathway to clinically treat pain has not been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo [3.1.0] hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (>10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain. Furthermore, signaling molecules acting at P2X3, P2X4, P2X7, and P2Y12Rs play critical roles in maladaptive pain neuroplasticity, and their antagonists reduce chronic or inflammatory pain, and, therefore, purine receptor modulation is a promising approach for future pain therapeutics. Structurally novel antagonists for these nucleotide receptors were discovered recently.
Collapse
|
22
|
Li J, Zhang Y, Illes P, Tang Y, Rubini P. Increasing Efficiency of Repetitive Electroacupuncture on Purine- and Acid-Induced Pain During a Three-Week Treatment Schedule. Front Pharmacol 2021; 12:680198. [PMID: 34040538 PMCID: PMC8141797 DOI: 10.3389/fphar.2021.680198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Acupuncture (AP) is an important constituent of the therapeutic repertoire of traditional Chinese medicine and has been widely used to alleviate chronic painful conditions all over the world. We studied in rats the efficiency of electroacupuncture (EAP) applied to the Zusanli acupoint (ST36) as an analgesic treatment over a 3-week period of time on purine (α,β-methylene ATP, dibenzoyl-ATP)- and acid (pH 6.0 medium)-induced pain in the rat paw. The two ATP derivatives stimulated P2X3 and P2X7 receptors, respectively, while the slightly acidic medium stimulated the “acid-sensitive ion channel 3” (ASIC3). It was found that the P2X7 receptor and ASIC-mediated pain was counteracted by EAP with greater efficiency at the end than at the beginning of the treatment schedule, while the P2X3 receptor–mediated pain was not. Our findings have important clinical and theoretical consequences, among others, because they are difficult to reconcile with the assumption that AP is primarily due to the release of peripheral and central opioid peptides causing the well-known tolerance to their effects. In consequence, AP is a convenient therapeutic instrument to treat subacute and chronic pain.
Collapse
Affiliation(s)
- Jie Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| |
Collapse
|
23
|
Shen D, Zheng YW, Zhang D, Shen XY, Wang LN. Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 2021; 17:411-424. [PMID: 33934245 DOI: 10.1007/s11302-021-09777-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague-Dawley rats underwent acute inflammatory pain by injecting Complete Freund's Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.
Collapse
Affiliation(s)
- Dan Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- School of Traditional Chinese Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Ya-Wen Zheng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433, China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
24
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
25
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
26
|
Kang L, Liu P, Peng A, Sun B, He Y, Huang Z, Wang M, Hu Y, He B. Application of traditional Chinese therapy in sports medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:11-20. [PMID: 35782678 PMCID: PMC9219272 DOI: 10.1016/j.smhs.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Chinese herbs have been used as dietary supplements to improve exercise performance. However, evidence-based studies for the use of Chinese herbs in sports remain scarce. Traditional Chinese therapy (TCT), a form of traditional Chinese non-pharmacological intervention, has remained in use for thousands of years in sports medicine. TCT is beneficial for sports injuries and in enhancing skill development, and is becoming increasingly popular among athletes, fitness enthusiasts, and individuals who regularly exercise. The therapeutic effects of TCT have been demonstrated by clinical and experimental studies, but using these modalities still is associate with potentially adverse effects. Further well-designed studies are necessary to confirm the efficacy of TCT in sports medicine. This review aims to summarize the application of TCT, discuss the issues surrounding TCT clinical research, and provide suggestions for applying traditional Chinese methods in the field of sports medicine.
Collapse
Affiliation(s)
- Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Peijie Liu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Aishi Peng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Bingxin Sun
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yumei He
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Zenghao Huang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Minjia Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yushi Hu
- Sport Hospital Affiliated to Chengdu Sport University, Chengdu, 610041, China
| | - Benxiang He
- Sport Hospital Affiliated to Chengdu Sport University, Chengdu, 610041, China
- Corresponding author. Sport Hospital Affiliated to Chengdu Sports University, 610041, No. 251, Wuhou Temple Street, Wuhou District, Chengdu, China.
| |
Collapse
|
27
|
Lv ZY, Yang YQ, Yin LM. Role of Purinergic Signaling in Acupuncture Therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:645-659. [PMID: 33641652 DOI: 10.1142/s0192415x21500294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China.,Shanghai Innovation Center of Traditional Chinese Medicine, Health Service, Shanghai 201203, P. R. China
| |
Collapse
|
28
|
Liu X, Lu J, Wang G, Chen X, Xv H, Huang J, Xue M, Tang J. Acupuncture for Arthralgia Induced by Aromatase Inhibitors in Patients with Breast Cancer: A Systematic Review and Meta-analysis. Integr Cancer Ther 2021; 20:1534735420980811. [PMID: 33586504 PMCID: PMC7883140 DOI: 10.1177/1534735420980811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Aromatase inhibitor-induced arthralgia (AIA) is the most common side effect of aromatase inhibitors (AIs) used in breast cancer patients and is related to the rate of adherence to AIs. The clinical effects of acupuncture on AIA have been assessed by some randomized controlled trials (RCTs). However, some studies reported that acupuncture was effective, while others claimed that it was ineffective. To clarify the clinical and placebo effects of acupuncture in treating AIA, we conducted this meta-analysis. Methods: Two reviewers (XL and GW) independently searched for RCTs in 5 English databases (PubMed, Web of Science, Embase, Springer, Cochrane Library) and 4 Chinese databases (China National Knowledge Infrastructure Database (CNKI), SinoMed, VIP and Wanfang Database) from their inception to 30 November 2019. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this meta-analysis was performed by fixed or random-effects models, and data were pooled with mean differences (MDs). Results: Seven trials involving 603 patients were reviewed. The primary outcome, the Brief Pain Inventory (BPI) score, significantly differed between the acupuncture and control groups [pain-related interference: MD = −1.89, 95% confidence interval (CI) [−2.99, −0.79], Z = 3.36 (P = .008 < .05), pain severity: MD = −1.57, 95% CI [−2.46, −0.68], Z = 3.45 (P = .0006 < .05), worst pain: MD = −2.31, 95% CI [−3.15, −1.48], Z = 5.47 (P < .0001 < .05)]. No severe adverse events were reported in any study. Conclusion: This meta-analysis showed that acupuncture is a safe and effective treatment for breast cancer patients with AIA. Additional research with improved blinding methods is warranted to further explore the nature of non-specific and placebo effects in true and sham acupuncture.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoxin Wang
- Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiu Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haiping Xv
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Huang
- Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Mingxin Xue
- Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Ceruti S. From astrocytes to satellite glial cells and back: A 25 year-long journey through the purinergic modulation of glial functions in pain and more. Biochem Pharmacol 2020; 187:114397. [PMID: 33382970 DOI: 10.1016/j.bcp.2020.114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
Fundamental progresses have been made in pain research with a comprehensive understanding of the neuronal pathways which convey painful sensations from the periphery and viscera to the central nervous system and of the descending modulating pathways. Nevertheless, many patients still suffer from various painful conditions, which are often associated to other primary pathologies, and get no or poor relief from available painkillers. Thus, the interest of many researchers has concentrated on new and promising cellular targets and biochemical pathways. This is the case of glia cells, both in the peripheral and in the central nervous system, and of purinergic receptors. Starting from many intuitions and hypotheses raised by Prof. Geoffrey Burnstock, data have accumulated which clearly highlight the fundamental role exerted by several nucleotide and nucleoside receptors in the modulation of glial cell reaction to pain triggers and of their cross-talk with sensory neurons which significantly contributes to the transition from acute to chronic pain. The purinergic system has therefore become an appealing pharmacological target in pain research, also based on the quite unexpected discovery that purines are involved in ancient analgesic techniques such as acupuncture. A more in-depth understanding of the complex and intricated purine-orchestrated scenario in pain conditions will hopefully lead to the identification and clinical development of new and effective analgesics.
Collapse
Affiliation(s)
- Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy.
| |
Collapse
|
30
|
Tribute to Prof. Geoffrey Burnstock: his contribution to acupuncture. Purinergic Signal 2020; 17:71-77. [PMID: 33034832 PMCID: PMC7954886 DOI: 10.1007/s11302-020-09729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
|
31
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
32
|
Shen D, Shen X, Schwarz W, Grygorczyk R, Wang L. P2Y 13 and P2X 7 receptors modulate mechanically induced adenosine triphosphate release from mast cells. Exp Dermatol 2020; 29:499-508. [PMID: 32155290 DOI: 10.1111/exd.14093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Subcutaneous mast cells (MCs) are vulnerable to mechanical stimulation from external environment. Thus, MCs immune function could be modulated by their mechanosensitivity. This property has been identified as the trigger mechanism of needling acupuncture, a traditional oriental therapy. Previously we have demonstrated the release of adenosine triphosphate (ATP), a stress-responsive signalling molecule, from mechanical-perturbed MCs. The current work explores its underlying mechanisms. We noticed that propagation of intracellular free Ca2+ occurred among HMC-1 cells in response to 50% hypotonic shock. Additionally, amplifying cascade of ATP-induced ATP release was observed in RBL-2H3 cells stimulated by medium displacement, which could be mimicked by exogenous ATP (exoATP). Secondary ATP liberation induced by low level (50 nmol/L) of exoATP was reduced by inhibiting ecto-ATPase-dependent ADP production with ARL67156, or blocking P2 receptors with suramin or PPADS, or with specific P2Y13 receptor antagonist MRS2211, or siRNA. Secondary ATP release induced by higher dose (200 μmol/L) of exoATP, sufficient to stimulate P2X7 receptor, was attenuated by suramin, PPADS or specific P2X7 receptor antagonist BBG, or siRNA. Finally, RT-PCR confirmed mRNA expression of P2Y13 and P2X7 in RBL-2H3 cells. Additionally, such secondary ATP release was attenuated by DPCPX, specific antagonist of adenosine A1 receptor, but not by MRS2179, specific inhibitor of P2Y1 receptor. In summary, mechanosensitive ATP release from MCs is facilitated by paracrine/autocrine stimulation of P2Y13 and P2X7 receptors. This multi-receptor combination could mediate transmission of information from a local site to distal areas, enabling communication with multiple surrounding cells to coordinate and synchronize their function.
Collapse
Affiliation(s)
- Dan Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Wolfgang Schwarz
- Institute for Biophysics, Goethe-University Frankfurt, Frankfurt a.M., Germany
| | - Ryszard Grygorczyk
- Centre de Recherche, Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lina Wang
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| |
Collapse
|
33
|
Electroacupuncture Inhibits the Activity of Astrocytes in Spinal Cord in Rats with Visceral Hypersensitivity by Inhibiting P2Y 1 Receptor-Mediated MAPK/ERK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4956179. [PMID: 32184891 PMCID: PMC7061128 DOI: 10.1155/2020/4956179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Background Irritable bowel syndrome (IBS) is a chronic functional bowel disease characterized by abdominal pain and changes in bowel habits in the absence of organic disease. Electroacupuncture (EA) has been shown to alleviate visceral hypersensitivity (VH) in IBS rat models by inhibiting the activation of astrocytes in the spinal cord. However, the underlying molecular mechanisms mediated by P2Y1 receptor of this effect of electroacupuncture remain unclear. Aim To explore whether EA inhibits the activity of astrocytes in the spinal cord dorsal horn of rat with visceral hypersensitivity by inhibiting P2Y1 receptor and its downstream mitogen activated protein kinase/extracellular regulated kinase 1 (MAPK/ERK) pathway. Methods Ten-day-old Sprague-Dawley (SD) male rats were given an intracolonic injection of 0.2 ml of 0.5% acetic acid (AA) to establish a visceral hypersensitivity model. EA was performed at Zusanli (ST 36) and Shangjuxu (ST 37) at 100 Hz for 1.05 s and 2 Hz for 2.85 s alternately, pulse width for 0.1 ms, 1 mA, 30 min/d, once a day, for 1 week. Cytokines IL-6, IL-1β, and TNF-α were analyzed by ELISA. The expressions of the P2Y1 receptor and pERK1/2 were analyzed by Western Blot and real-time PCR in the model and EA treated animals to explore the molecular mechanism of EA in inhibiting the activity of spinal cord dorsal horn (L6-S2 segment) astrocytes in rats with IBS visceral hypersensitivity. Results EA significantly reduced the behavioral abdominal withdrawal reflex score (AWRs) of IBS rats with visceral hypersensitivity induced by AA. For comparison, intrathecal injection of astrocytes activity inhibitor fluorocitrate (FCA) also reduced visceral hypersensitivity in IBS rats. EA at Zusanli and Shangjuxu inhibited the mRNA and protein expression of the glial fibrillary acidic protein (GFAP) and in rat spinal cord and reduced the release of inflammatory cytokines IL-6, IL-1, and TNF-α were analyzed by ELISA. The expressions of the P2Y1 receptor and pERK1/2 were analyzed by Western Blot and real-time PCR in the model and EA treated animals to explore the molecular mechanism of EA in inhibiting the activity of spinal cord dorsal horn (L6-S2 segment) astrocytes in rats with IBS visceral hypersensitivity. β, and TNF-μg, 10 μg, 10 Conclusion EA inhibited astrocyte activity in the spinal cord dorsal horn of rat with IBS visceral hypersensitivity by inhibiting the P2Y1 receptor and its downstream, PKC, and MAPK/ERK1/2 pathways.
Collapse
|
34
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
35
|
Zhang Y, Huang L, Kozlov SA, Rubini P, Tang Y, Illes P. Acupuncture alleviates acid- and purine-induced pain in rodents. Br J Pharmacol 2019; 177:77-92. [PMID: 31444978 DOI: 10.1111/bph.14847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Zhang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Lumei Huang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Sergey A Kozlov
- Shemyakin-Ovchinikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Patrizia Rubini
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China.,Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Han J, Yang MG, Zhang Q, Jin T. Underestimated Cervical Extradural Hematoma Secondary to the Small Needle-Scalpel for the Treatment of Cervical Spondylosis: A Rare but Avoidable Complication. Front Neurol 2019; 10:740. [PMID: 31333577 PMCID: PMC6625209 DOI: 10.3389/fneur.2019.00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Objective: To present a case report highlighting a severe, yet avoidable, complication following small needle-scalpel treatment for cervical spondylosis. Introduction: The small needle-scalpel is a miniature surgical instrument used to create intense and invasive punctures at certain acupoints with a small latch needle. It has been increasingly gaining popularity among clinicians and patients all over the world during the past years. However, severe complications after small needle-scalpel treatment have not previously been reported. Methods: Here we report a 54-year-old man who recently suffered from cervical spondylosis and underwent small needle-scalpel treatment, which was performed by a rural doctor. While there were no new neurologic deficits, the patient experienced delayed functional deterioration until the onset of quadriplegia within 1 month of treatment. Magnetic resonance imaging demonstrated a C2-C7 dorsally placed extradural hematoma with severe cord compression and subcutaneous soft tissue hemorrhage. Results: The patient refused urgent corrective surgery and later died due to respiratory failure. Conclusions: Although small needle-scalpel therapy has many benefits, such as reducing pain, shorter expenditure, shorter period of therapy and better recovery of function, there are also many potentially severe risks, such as cervical extradural bleeding, which requires clinicians to pay more attention to avoid the complications.
Collapse
Affiliation(s)
| | | | | | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|