1
|
Dantsuji M, Mochizuki A, Nakayama K, Kanamaru M, Izumizaki M, Tanaka KF, Inoue T, Nakamura S. Optogenetic activation of serotonergic neurons changes masticatory movement in freely moving mice. Sci Rep 2024; 14:27703. [PMID: 39533095 PMCID: PMC11557829 DOI: 10.1038/s41598-024-79429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The serotonergic system modulates the neural circuits involved in jaw movement; however, the role of serotonin (5-HT) neurons in masticatory movement remains unclear. Here, we investigated the effect of selective activation of 5-HT neurons in the dorsal raphe nucleus (DRN), or the raphe obscurus nucleus (ROb), on voluntary masticatory movement using transgenic mice expressing the channelrhodopsin-2 (ChR2) mutant (C128S) in central 5-HT neurons. During voluntary mastication, DRN blue light illumination increased masticatory frequency and decreased the root mean square peak amplitude of electromyography (EMG) in the masseter muscles. DRN blue light illumination also decreased EMG burst duration in the masseter and digastric muscles. These changes were blocked by a 5-HT2A receptor antagonist. Conversely, ROb blue light illumination during voluntary mastication did not affect masticatory frequency and EMG bursts in the masseter and digastric muscles. DRN or ROb blue light illumination during the resting state did not induce rhythmic jaw movement such as mastication but induced an increase in EMG activity in masseter and digastric muscles. These results suggest that both DRN and ROb 5-HT neurons may facilitate jaw movement. Furthermore, DRN 5-HT neuron may contribute to changes in masticatory patterns during the masticatory sequence.
Collapse
Affiliation(s)
- Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Mitsuko Kanamaru
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, Yamanashi, 403-0005, Japan
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
- Department of Contemporary life design, Kyoto Koka Women's University, Kyoto, 615-0882, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Conti PCR, Cunha CO, Conti ACDCF, Bonjardim LR, Barbosa JS, Costa YM. Secondary bruxism: A valid diagnosis or just a coincidental finding of additional masticatory muscle activity? A narrative review of literature. J Oral Rehabil 2024; 51:74-86. [PMID: 37688286 DOI: 10.1111/joor.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Bruxism is defined as a repetitive masticatory muscle activity that can manifest it upon awakening (awake bruxism-AB) or during sleep (sleep bruxism-SB). Some forms of both, AB and SB can be associated to many other coexistent factors, considered of risk for the initiation and maintenance of the bruxism. Although controversial, the term 'secondary bruxism' has frequently been used to label these cases. The absence of an adequate definition of bruxism, the non-distinction between the circadian manifestations and the report of many different measurement techniques, however, are important factors to be considered when judging the literature findings. The use (and abuse) of drugs, caffeine, nicotine, alcohol and psychoactive substances, the presence of respiratory disorders during sleep, gastroesophageal reflux disorders and movement, neurological and psychiatric disorders are among these factors. The scarcity of controlled studies and the complexity and interactions among all aforementioned factors, unfortunately, does not allow to establish any causality or temporal association with SB and AB. The supposition that variables are related depends on different parameters, not clearly demonstrated in the available studies. OBJECTIVES This narrative review aims at providing oral health care professionals with an update on the co-risk factors and disorders possibly associated with bruxism. In addition, the authors discuss the appropriateness of the term 'secondary bruxism' as a valid diagnostic category based on the available evidence. CONCLUSION The absence of an adequate definition of bruxism, the non-distinction between the circadian manifestations and the report of many different measurement techniques found in many studies preclude any solid and convincing conclusion on the existence of the 'secondary' bruxism.
Collapse
Affiliation(s)
- Paulo Cesar R Conti
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
- Bauru Orofacial Group, University of São Paulo, Bauru, Brazil
| | - Carolina Ortigosa Cunha
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
- Bauru Orofacial Group, University of São Paulo, Bauru, Brazil
| | - Ana Cláudia de Castro F Conti
- Bauru Orofacial Group, University of São Paulo, Bauru, Brazil
- Department of Orthodontics and Pediatric Dentistry, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Leonardo R Bonjardim
- Bauru Orofacial Group, University of São Paulo, Bauru, Brazil
- Department of Biologic Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Yuri Martins Costa
- Bauru Orofacial Group, University of São Paulo, Bauru, Brazil
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
3
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
4
|
Smardz J, Martynowicz H, Wojakowska A, Wezgowiec J, Danel D, Mazur G, Wieckiewicz M. Lower serotonin levels in severe sleep bruxism and its association with sleep, heart rate, and body mass index. J Oral Rehabil 2021; 49:422-429. [PMID: 34907576 DOI: 10.1111/joor.13295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/25/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sleep bruxism (SB) is a complex behaviour that seems to be associated with the serotoninergic pathway. OBJECTIVES This exploratory research aimed to evaluate the levels of serotonin in individuals with sleep bruxism diagnosed by video polysomnography. The study also evaluated whether the levels of serotonin were associated with body mass index, heart rate, and sleep parameters. METHODS The study participants were adults hospitalised in the Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology at the Wroclaw Medical University. They underwent a single-night video polysomnography during which sleep and SB parameters and heart rate were evaluated. Additionally, body mass index and blood serotonin levels were evaluated for each patient. RESULTS A total of 105 patients were included in this study (80 women and 25 men). All the patients were Caucasians aged 18-63 years, with a mean age ± (standard deviation) of 33.43± 10.8 years. Seventy-five patients (71.43%) presented sleep bruxism (bruxism episodes index ≥2) and 30 (28.57%) did not. Fifty patients (47.62%) presented severe sleep bruxism (bruxism episodes index >4). The results showed that lower blood serotonin levels were associated with severe sleep bruxism; increased bruxism episodes index, rapid eye movement sleep, and body mass index; and decreased maximal pulse. CONCLUSION Severe sleep bruxism and the associated phenomena seem to co-occur with lower blood serotonin levels. The study supports the hypothesis on the relationship between the serotoninergic pathway and sleep bruxism.
Collapse
Affiliation(s)
- Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun 2021; 12:7093. [PMID: 34876587 PMCID: PMC8651775 DOI: 10.1038/s41467-021-27419-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinal cord injury (SCI) interrupts long-projecting descending spinal neurons and disrupts the spinal central pattern generator (CPG) that controls locomotion. The intrinsic mechanisms underlying re-wiring of spinal neural circuits and recovery of locomotion after SCI are unclear. Zebrafish shows axonal regeneration and functional recovery after SCI making it a robust model to study mechanisms of regeneration. Here, we use a two-cut SCI model to investigate whether recovery of locomotion can occur independently of supraspinal connections. Using this injury model, we show that injury induces the localization of a specialized group of intraspinal serotonergic neurons (ISNs), with distinctive molecular and cellular properties, at the injury site. This subpopulation of ISNs have hyperactive terminal varicosities constantly releasing serotonin activating 5-HT1B receptors, resulting in axonal regrowth of spinal interneurons. Axon regrowth of excitatory interneurons is more pronounced compared to inhibitory interneurons. Knock-out of htr1b prevents axon regrowth of spinal excitatory interneurons, negatively affecting coordination of rostral-caudal body movements and restoration of locomotor function. On the other hand, treatment with 5-HT1B receptor agonizts promotes functional recovery following SCI. In summary, our data show an intraspinal mechanism where a subpopulation of ISNs stimulates axonal regrowth resulting in improved recovery of locomotor functions following SCI in zebrafish.
Collapse
|
6
|
Kang JY, Kim DY, Lee JS, Hwang SJ, Kim GH, Hyun SH, Son CG. Korean Red Ginseng Ameliorates Fatigue via Modulation of 5-HT and Corticosterone in a Sleep-Deprived Mouse Model. Nutrients 2021; 13:3121. [PMID: 34578998 PMCID: PMC8469198 DOI: 10.3390/nu13093121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023] Open
Abstract
Central fatigue, which is neuromuscular dysfunction associated with neurochemical alterations, is an important clinical issue related to pathologic fatigue. This study aimed to investigate the anti-central fatigue effect of Korean red ginseng (KRG) and its underlying mechanism. Male BALB/c mice (8 weeks old) were subjected to periodic sleep deprivation (SD) for 6 cycles (forced wakefulness for 2 days + 1 normal day per cycle). Simultaneously, the mice were administered KRG (0, 100, 200, or 400 mg/kg) or ascorbic acid (100 mg/kg). After all cycles, the rotarod and grip strength tests were performed, and then the changes regarding stress- and neurotransmitter-related parameters in serum and brain tissue were evaluated. Six cycles of SD notably deteriorated exercise performance in both the rotarod and grip strength tests, while KRG administration significantly ameliorated these alterations. KRG also significantly attenuated the SD-induced depletion of serum corticosterone. The levels of main neurotransmitters related to the sleep/wake cycle were markedly altered (serotonin was overproduced while dopamine levels were decreased) by SD, and KRG significantly attenuated these alterations through relevant molecules including brain-derived neurotropic factor and serotonin transporter. This study demonstrated the anti-fatigue effects of KRG in an SD mouse model, indicating the clinical relevance of KRG.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Do-Young Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea; (D.-Y.K.); (G.-H.K.)
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Geon-Ho Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea; (D.-Y.K.); (G.-H.K.)
| | - Sun-Hee Hyun
- R&D Headquarters, Korean Ginseng cooperation, Daejeon 34337, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| |
Collapse
|
7
|
Sato K. Why is the mesencephalic nucleus of the trigeminal nerve situated inside the brain? Med Hypotheses 2021; 153:110626. [PMID: 34130114 DOI: 10.1016/j.mehy.2021.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
Primary sensory neurons are usually situated in ganglia outside the brain, while the mesencephalic nucleus of the trigeminal nerve (Me5) is situated inside the brain. However, it remains unknown why only Me5 situated inside the brain is. The neurons of Me5 are the cell bodies of primary afferent fibers concerned with the muscles of mastication and periodontal receptors of both maxillary and mandibular teeth. Interestingly, there was no Me5 till the evolution level of the agnatha, vertebrates which lack jaws, while Me5 appeared with the evolution of jawed vertebrates, the gnathostomes. Thus, I speculate that the appearance of jaws necessitated the emergence of a novel sensory system including newly-made primary sensory neurons to co-ordinate jaw movement and this need was met by the appearance of Me5. Although primary sensory neurons are usually generated from the neural crest or the neurogenic placodes, primary sensory neurons in Me5 are derived from neuroepithelium of the dorsal midline of the midbrain. Taken together, I propose the following hypothesis; (1) Me5 did not exist till the evolution level of agnatha, which lacks jaw. (2) When jawed vertebrates evolved, a new sensory system including new primary sensory neurons for mastication was needed. (3) At that point, there was no capacity for the neural crest and neurogenic placodes to make primary sensory neurons. (4) However, there remained capacity only for the neuroepithelium of the midbrain to make primary sensory neurons. (5) Thus, Me5 was newly made inside the CNS.
Collapse
Affiliation(s)
- Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
8
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|