1
|
Bhardwaj V, Kumari S, Dhapola R, Sharma P, Beura SK, Singh SK, Vellingiri B, HariKrishnaReddy D. Shedding light on microglial dysregulation in Alzheimer's disease: exploring molecular mechanisms and therapeutic avenues. Inflammopharmacology 2025; 33:679-702. [PMID: 39609333 DOI: 10.1007/s10787-024-01598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Alzheimer's disease (AD) stands out as the foremost prevalent neurodegenerative disorder, characterized by a complex etiology. Various mechanisms have been proposed to elucidate its onset, encompassing amyloid-beta (Aβ) toxicity, tau hyperphosphorylation, oxidative stress and reactive gliosis. The hallmark of AD comprises Aβ and tau aggregation. These misfolded protein aggregates trigger the activation of glial cells, primarily microglia. Microglial cells serve as a major source of inflammatory mediators and their cytotoxic activation has been implicated in various aspects of AD pathology. Activated microglia can adopt M1 or M2 phenotypes, where M1 promotes inflammation by increasing pro-inflammatory cytokines and M2 suppresses inflammation by boosting anti-inflammatory factors. Overexpressed pro-inflammatory cytokines include interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in adjacent brain regions. Furthermore, microglial signaling pathways dysregulated in AD are myeloid differentiation primary-response protein 88 (Myd 88), colony-stimulating factor-1 receptor (CSF1R) and dedicator of cytokinesis 2 (DOCK2), which alter the physiology. Despite numerous findings, the causative role of microglia-mediated neuroinflammation in AD remains elusive. This review concisely explores cellular and molecular mechanisms of activated microglia and their correlation with AD pathogenesis. Additionally, it highlights promising therapeutics targeting microglia modulation, currently undergoing preclinical and clinical studies, for developing effective treatment for AD.
Collapse
Affiliation(s)
- Vanshu Bhardwaj
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sunil Kumar Singh
- Department of Bio-Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
2
|
Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol 2024; 981:176882. [PMID: 39128808 DOI: 10.1016/j.ejphar.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Interferon beta (IFNβ) is a member of the type-1 interferon family and has various immunomodulatory functions in neuropathological conditions. Although the level of IFNβ is low under healthy conditions, it is increased during inflammatory processes to protect the central nervous system (CNS). In particular, microglia and astrocytes are the main sources of IFNβ upon inflammatory insult in the CNS. The protective effects of IFNβ are well characterized in reducing the progression of multiple sclerosis (MS); however, little is understood about its effects in other neurological/neurodegenerative diseases. In this review, different types of IFNs and their signaling pathways will be described. Then we will focus on the potential role and therapeutic effect of IFNβ in several CNS-related diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury, prion disease and spinocerebellar ataxia 7.
Collapse
Affiliation(s)
- Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Qiao L, Yi S, Li T, Pan X, Wang G, Liu X, Li M, Min J, Le H, Tang Z. Calpeptin improves the cognitive function in Alzheimer's disease-like complications of diabetes mellitus rats by regulating TXNIP/NLRP3 inflammasome. J Diabetes Investig 2024; 15:1365-1376. [PMID: 39171660 PMCID: PMC11442751 DOI: 10.1111/jdi.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
AIMS Diabetes mellitus (DM) is closely associated with Alzheimer's disease (AD), and is considered an accelerator of AD. Our previous study has confirmed that the Calpain inhibitor Calpeptin may alleviate AD-like complications of diabetes mellitus. This work further investigated its underlying mechanism. MATERIALS AND METHODS Diabetes mellitus rat model was constructed by a high-fat and high-sugar diet combined with streptozotocin, followed by the administration of Calpeptin. Moreover, rats were micro-injected with LV-TXNIP-OE/vector into the CA1 region of the hippocampus one day before streptozotocin injection. The Morris water maze test assessed the spatial learning and memory ability of rats. Immunohistochemistry and western blotting detected the expression of the pericyte marker PDGFRβ, tight junction proteins occludin and ZO-1, calpain-1, calpain-2, APP, Aβ, Aβ-related, and TXNIP/NLRP3 inflammasome-related proteins. Immunofluorescence staining examined the blood vessel density and neurons in the hippocampus. Evans blue extravasation and fluorescence detected the permeability of the blood-brain barrier (BBB) in rats. Additionally, the oxidative stress markers and inflammatory-related factors were assessed by enzyme-linked immunosorbent assay. RESULTS Calpeptin effectively reduced the expression of Calpain-2 and TXNIP/NLRP3 inflammasome-related proteins, improved the decreased pericyte marker (PDGFR-β) and cognitive impairment in hippocampus of DM rats. The neuronal loss, microvessel density, permeability of BBB, Aβ accumulation, inflammation, and oxidative stress injury in the hippocampus of DM rats were also partly rescued by calpeptin treatment. The influence conferred by calpeptin treatment was reversed by TXNIP overexpression. CONCLUSIONS These data demonstrated that calpeptin treatment alleviated AD-like symptoms in DM rats through regulating TXNIP/NLRP3 inflammasome. Thus, calpeptin may be a potential drug to treat AD-like complications of diabetes mellitus.
Collapse
Affiliation(s)
- Luyao Qiao
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Shouqin Yi
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tianpei Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xin Pan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gege Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Min Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Huahui Le
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zhenyu Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
4
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
De Martini LB, Sulmona C, Brambilla L, Rossi D. Cell-Penetrating Peptides as Valuable Tools for Nose-to-Brain Delivery of Biological Drugs. Cells 2023; 12:1643. [PMID: 37371113 DOI: 10.3390/cells12121643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their high specificity toward the target and their low toxicity, biological drugs have been successfully employed in a wide range of therapeutic areas. It is yet to be mentioned that biologics exhibit unfavorable pharmacokinetic properties, are susceptible to degradation by endogenous enzymes, and cannot penetrate biological barriers such as the blood-brain barrier (i.e., the major impediment to reaching the central nervous system (CNS)). Attempts to overcome these issues have been made by exploiting the intracerebroventricular and intrathecal routes of administration. The invasiveness and impracticality of these procedures has, however, prompted the development of novel drug delivery strategies including the intranasal route of administration. This represents a non-invasive way to achieve the CNS, reducing systemic exposure. Nonetheless, biotherapeutics strive to penetrate the nasal epithelium, raising the possibility that direct delivery to the nervous system may not be straightforward. To maximize the advantages of the intranasal route, new approaches have been proposed including the use of cell-penetrating peptides (CPPs) and CPP-functionalized nanosystems. This review aims at describing the most impactful attempts in using CPPs as carriers for the nose-to-brain delivery of biologics by analyzing their positive and negative aspects.
Collapse
Affiliation(s)
- Lisa Benedetta De Martini
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| |
Collapse
|
6
|
Wang YT, Wang H, Ren WJ, Dai XL, Huo Q, Wang S, Sun YX. 3,6'-Disinapoylsucrose alleviates the amyloid precursor protein and lipopolysaccharide induced cognitive dysfunction through upregulation of the TrkB/BDNF pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:387-402. [PMID: 35672874 DOI: 10.1080/10286020.2022.2069565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study is to explore the effect and mechanism of 3,6'-disinapoylsucrose (DISS) on an Alzheimer's disease (AD) mice model induced by APPswe695 lentivirus (LV) and intraperitoneal injection of lipopolysaccharide (LPS). The results show that DISS improves cognitive ability, decreases the levels of IL-2, IL-6, IL-1β, and TNF-α, reduces the expression of NF-κB p65, and alleviates Aβ deposition and nerve cell damage. DISS can regulate tyrosine kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling in the hippocampus. In summary, DISS can significantly alleviate neuroinflammation, spatial learning and memory disorders in AD model mice.
Collapse
Affiliation(s)
- Yun-Ting Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Institute of Functional Food Science and Technology, Beijing Union University, Beijing 100023, China
- Department of Food Science, School of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Han Wang
- Department of Food Science, School of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Wu-Jiang Ren
- Department of Food Science, School of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Xue-Ling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Institute of Functional Food Science and Technology, Beijing Union University, Beijing 100023, China
| | - Qing Huo
- Department of Food Science, School of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Shuo Wang
- Department of Food Science, Nankai University School of Medicine, Tianjing 300350, China
| | - Ya-Xuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Institute of Functional Food Science and Technology, Beijing Union University, Beijing 100023, China
| |
Collapse
|
7
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 PMCID: PMC11415174 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
8
|
Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol 2023; 14:1110593. [PMID: 36817430 PMCID: PMC9936317 DOI: 10.3389/fimmu.2023.1110593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Since their original discovery, type I interferons (IFN-Is) have been closely associated with antiviral immune responses. However, their biological functions go far beyond this role, with balanced IFN-I activity being critical to maintain cellular and tissue homeostasis. Recent findings have uncovered a darker side of IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory and neurodegenerative pathologies. The underlying causes of these 'interferonopathies' are diverse and include monogenetic syndromes, autoimmune disorders, as well as chronic infections. The prominent involvement of the CNS in these disorders indicates a particular susceptibility of brain cells to IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in the CNS, and secondly, by exploring the spectrum of neurological disorders arising from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial and fundamental step towards development of new therapeutic strategies for interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer's disease model. Neurosci Lett 2023; 792:136968. [PMID: 36396023 DOI: 10.1016/j.neulet.2022.136968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) patients frequently experience neuropsychiatric symptoms (NPS), which are linked to a lower quality of life and a faster rate of disease progression. A growing body of research indicates that several microglial phenotypes control the inflammatory response and are crucial in the pathophysiology of AD-related NPS. Given the crucial role played by inflammatory mediators produced by microglia in developing of NPS, interferon-beta (IFNβ), a cytokine with anti-inflammatory capabilities, maybe a successful treatment for NPS caused by AD. In this investigation, using a rat model of AD, we examined the impact of intranasal treatment of IFNβ on anxious/depressive-like behavior and microglial M1/M2 polarization. The rat hippocampus was bilaterally injected with lentiviruses harboring mutant human amyloid precursor protein. Rats were given recombinant IFNβ1a (68,000 IU/rat) via the intranasal route, starting on day 23 following viral infection and continuing until day 49. On days 47-49, the elevated plus maze, forced swim, and tail suspension tests were applied to measure anxiety- and depressive-like behavior. Additionally, qPCR was utilized to quantify the expression of M1 markers (CD68, CD86, and CD40) and M2 markers (Ym1, CD206, Arg1, GDNF, BDNF, and SOCS1). Our findings demonstrated that decreased M2 marker expression is accompanied by anxious/depressive-like behavior when the mutant human APP gene is overexpressed in the hippocampus. In the rat model of AD, IFNβ therapy reduces anxious/depressive-like behaviors, at least in part by polarizing microglia towards M2. Therefore, IFNβ may be a viable therapeutic drug for reducing NPS in the context of AD.
Collapse
|
10
|
Intranasal interferon-beta as a promising alternative for the treatment of Alzheimer's disease. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Azarafrouz F, Farhangian M, Chavoshinezhad S, Dargahi S, Nassiri-Asl M, Dargahi L. Interferon beta attenuates recognition memory impairment and improves brain glucose uptake in a rat model of Alzheimer's disease: Involvement of mitochondrial biogenesis and PI3K pathway. Neuropeptides 2022; 95:102262. [PMID: 35709657 DOI: 10.1016/j.npep.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022]
Abstract
Interferon beta (IFNβ) is a cytokine with anti-apoptotic and anti-inflammatory properties, and its beneficial effects on Alzheimer's disease (AD) have been recently shown. The alterations in cerebral glucose uptake are closely linked to memory deficit and AD progression. The current study was designed to determine if IFNβ can improve recognition memory and brain glucose uptake in a rat model of AD. The lentiviruses expressing mutant human amyloid precursor protein were injected bilaterally to the rat hippocampus. From day 23 after virus injection, rats were intranasally treated with recombinant IFNβ protein (68,000 IU/rat) every other day until day 50. Recognition memory performance was evaluated by novel object recognition test on days 46-49. The 18F-2- fluoro-deoxy-d-glucose positron emission tomography (18F-FDG-PET) was used to determine changes in brain glucose metabolism on day 50. The expression of the PI3K/Akt pathway components, neurotrophins and mitochondrial biogenesis factors were also measured by qPCR in the hippocampus. Our results showed that IFNβ treatment improves recognition memory performance in parallel with increased glucose uptake and neuronal survival in the hippocampus of the AD rats. The neuroprotective effect of IFNβ could be attributed, at least partly, to activation of PI3K-Akt-mTOR signaling pathway, increased expression of NGF, and mitochondrial biogenesis. Taken together, our findings suggest the therapeutic potential of IFNβ for AD.
Collapse
Affiliation(s)
- Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Saina Dargahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sanford SAI, McEwan WA. Type-I Interferons in Alzheimer's Disease and Other Tauopathies. Front Cell Neurosci 2022; 16:949340. [PMID: 35910253 PMCID: PMC9334774 DOI: 10.3389/fncel.2022.949340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The detection of pathogen-associated molecular patterns can elicit the production of type-I interferons (IFNs), soluble cytokines that induce a transcriptional state inhibitory to viral replication. Signatures of type-I IFN-driven gene expression, and type-I IFNs themselves, are observed in the central nervous system during neurodegenerative diseases including Alzheimer's disease and other tauopathies, the umbrella term for diseases that feature aggregation of the cytosolic protein tau. The contribution of the type-I IFN response to pathological progression of these diseases, however, is not well-understood. The wholesale transcriptional changes that ensue from type-I IFN production can both promote protective effects and lead to damage dependent on the context and duration of the response. The type-I IFN system therefore represents a signaling pathway with a potential disease-modifying role in the progression of neurodegenerative disease. In this review we summarize the evidence for a type-I IFN signature in AD and other tauopathies and examine the role of aggregated proteins as inflammatory stimuli. We explore both the protective role of IFN against protein pathologies as well as their downstream toxic consequences, which include the exacerbation of protein pathology as a potentially destructive feed-forward loop. Given the involvement of type-I IFNs in other neurogenerative diseases, we draw comparisons with other categories of homotypic protein aggregation. Understanding how type-I IFN influences progression of AD and other tauopathies may yield important insight to neurodegeneration and identify new targets in an area currently lacking disease-modifying therapies.
Collapse
Affiliation(s)
- Sophie A. I. Sanford
- Department of Clinical Neurosciences at the University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at the University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Sophie A. I. Sanford
| | - William A. McEwan
- Department of Clinical Neurosciences at the University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at the University of Cambridge, Cambridge, United Kingdom
- William A. McEwan
| |
Collapse
|
13
|
Recombinant human erythropoietin and interferon-β-1b protect against 3-nitropropionic acid-induced neurotoxicity in rats: possible role of JAK/STAT signaling pathway. Inflammopharmacology 2022; 30:667-681. [PMID: 35249177 PMCID: PMC8948152 DOI: 10.1007/s10787-022-00935-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
3-Nitropropionic acid (3-NP) model serves as a beneficial tool to evaluate the effect of novel treatments for Huntington’s disease (HD). The aim of the present study was to demonstrate the neuroprotective effect of recombinant human erythropoietin (rhEPO) and interferon-beta-1b (IFN-β-1b) in 3-NP-induced neurotoxicity in rats. Rats were injected with 3-NP (10 mg/kg/day, i.p) for 2 weeks and were divided into five subgroups; the first served as the HD group, the second received rhEPO (5000 IU/kg/every other day, i.p.) for 2 weeks, the third received rhEPO starting from the 5th day of 3-NP injection, the fourth received IFN-β-1b (300,000 units, every day other day, s.c) for 2 weeks, and the last received IFN-β-1b starting from the 5th day of 3-NP injection. All treatments significantly improved motor and behavior performance of rats. Moreover, all treatments markedly restored mitochondrial function as well as brain-derived neurotrophic factor level, and reduced oxidative stress biomarkers, pro-inflammatory mediators, nuclear factor kappa B expression, caspase-3, and Bax/Bcl2 ratio in the striatum. In conclusion, the present study demonstrates the neuroprotective potential of rhEPO or IFN-β-1b on 3-NP-induced neurotoxicity in rats. Furthermore, our study suggests that activation of JAK2/STAT3 or JAK1/STAT3 may contribute to the neuroprotective activity of rhEPO or IFN-β-1b, respectively. We also found that early treatment with rhEPO did not confer any benefits compared with late rhEPO treatment, while early IFN-β-1b showed a marked significant benefit compared with late IFN-β-1b.
Collapse
|
14
|
Chavoshinezhad S, Zibaii MI, Seyed Nazari MH, Ronaghi A, Asgari Taei A, Ghorbani A, Pandamooz S, Salehi MS, Valian N, Motamedi F, Haghparast A, Dargahi L. Optogenetic stimulation of entorhinal cortex reveals the implication of insulin signaling in adult rat's hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110344. [PMID: 33964323 DOI: 10.1016/j.pnpbp.2021.110344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022]
Abstract
Adult neurogenesis in the hippocampal dentate gyrus plays a critical role in learning and memory. Projections originating from entorhinal cortex, known as the perforant pathway, provide the main input to the dentate gyrus and promote neurogenesis. However, neuromodulators and molecular changes mediating neurogenic effects of this pathway are not yet fully understood. Here, by means of an optogenetic approach, we investigated neurogenesis and synaptic plasticity in the hippocampus of adult rats induced by stimulation of the perforant pathway. The lentiviruses carrying hChR2 (H134R)-mCherry gene under the control of the CaMKII promoter were injected into the medial entorhinal cortex region of adult rats. After 21 days, the entorhinal cortex region was exposed to the blue laser (473 nm) for five consecutive days (30 min/day). The expression of synaptic plasticity and neurogenesis markers in the hippocampus were evaluated using molecular and histological approaches. In parallel, the changes in the gene expression of insulin and its signaling pathway, trophic factors, and components of mitochondrial biogenesis were assessed. Our results showed that optogenetic stimulation of the entorhinal cortex promotes hippocampal neurogenesis and synaptic plasticity concomitant with the increased levels of insulin mRNA and its signaling markers, neurotrophic factors, and activation of mitochondrial biogenesis. These findings suggest that effects of perforant pathway stimulation on the hippocampus, at least in part, are mediated by insulin increase in the dentate gyrus and subsequently activation of its downstream signaling pathway.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Abdolaziz Ronaghi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Brod SA. Anti-Inflammatory Agents: An Approach to Prevent Cognitive Decline in Alzheimer's Disease. J Alzheimers Dis 2021; 85:457-472. [PMID: 34842189 DOI: 10.3233/jad-215125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Systemic inflammation is an organism's response to an assault by the non-self. However, that inflammation may predispose humans to illnesses targeted to organs, including Alzheimer's disease (AD). Lesions in AD have pro-inflammatory cytokines and activated microglial/monocyte/macrophage cells. Up to this point, clinical trials using anti-amyloid monoclonal antibodies have not shown success. Maybe it is time to look elsewhere by combating inflammation. Neuroinflammation with CNS cellular activation and excessive expression of immune cytokines is suspected as the "principal culprit" in the higher risk for sporadic AD. Microglia, the resident immune cell of the CNS, perivascular myeloid cells, and activated macrophages produce IL-1, IL-6 at higher levels in patients with AD. Anti-inflammatory measures that target cellular/cytokine-mediated damage provide a rational therapeutic strategy. We propose a clinical trial using oral type 1 IFNs to act as such an agent; one that decreases IL-1 and IL-6 secretion by activating lamina propria lymphocytes in the gut associated lymphoid tissue with subsequent migration to the brain undergoing inflammatory responses. A clinical trial would be double-blind, parallel 1-year clinical trial randomized 1 : 1 oral active type 1 IFN versus best medical therapy to determine whether ingested type I IFN would decrease the rate of cognitive decline in mild cognitive impairment or mild AD. Using cognitive psychometrics, imaging, and fluid biomarkers (MxA for effective type I IFN activity beyond the gut), we can determine if oral type I IFN can prevent cognitive decline in AD.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Tedeschi DV, da Cunha AF, Cominetti MR, Pedroso RV. Efficacy of Gene Therapy to Restore Cognition in Alzheimer's Disease: A Systematic Review. Curr Gene Ther 2021; 21:246-257. [PMID: 33494678 DOI: 10.2174/1566523221666210120091146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the main cause of dementia and it is a progressive neurogenerative disease characterized by the accumulation of neurofibrillary tangles and senile plaques. There is currently no cure; however, some treatments are available to slow down the progression of the disease, including gene therapy, which has been investigated to have great potential for the treatment of AD. OBJECTIVE The aim of this review was to identify the efficacy of gene therapy to restore cognition in AD. METHODS A systematic review was carried out using papers published up to May 2020 and available in the Web of Science, Scopus, and Medline/PUBMED databases. Articles were considered for inclusion if they were original researches that investigated the effects of gene therapy on cognition in AD. The methodological quality of the selected studies was evaluated using the Risk of Bias Tool for Animal Intervention Studies (SYRCLE's Rob tool) and the Jadad Scale. RESULTS Most preclinical studies obtained positive results in improving memory and learning in mice that underwent treatment with gene therapy. On the other hand, clinical studies have obtained inconclusive results related to the delivery methods of the viral vector used in gene therapy. CONCLUSION Gene therapy has shown a great potential for the treatment of AD in preclinical trials, but results should be interpreted with caution since preclinical studies presented limitations to predict the efficacy of the treatment outcome in humans.
Collapse
Affiliation(s)
- Desyrre V Tedeschi
- Federal University of Sao Carlos, Rodovia Washington Luis Km 310 - 13565-905, Sao Carlos SP, Brazil
| | - Anderson F da Cunha
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luis Km 310 - 13565- 905, Sao Carlos SP, Brazil
| | - Márcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rodovia Washington Luis Km 310 - 13565-905, Sao Carlos SP, Brazil
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rodovia Washington Luis Km 310 - 13565-905, Sao Carlos SP, Brazil
| |
Collapse
|
17
|
Amyloid precursor protein binds with TNFRSF21 to induce neural inflammation in Alzheimer's Disease. Eur J Pharm Sci 2020; 157:105598. [PMID: 33075465 DOI: 10.1016/j.ejps.2020.105598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
OBJECTS Several evidences suggested that TNFRSF21 exert crucial functions in regulating neuroinflammatory effects, which had been detected in Alzheimer's Disease (AD). We performed many experiments aimed to explore the comprehensively biological functions of TNFRSF21 and its underlying mechanism in AD. METHODS Twelve normal healthy C57BL6 mice were selected, and AD model mice (APP transgenic model Tg2576 and Tau transgenic model JNPL3) were constructed and TNFRSF21 knockdown was performed in vitro. Western blotting, Co-immunoprecipitation (Co-IP), ELISA assay, flow cytometry and immunofluorescence were performed to explore the biological functions of APP and its underlying mechanism in AD. RESULTS The expression of TNFRSF21, APP, NF-κB and MAPK8 was increased in APP transgenic model (Tg2576) and Tau transgenic model (JNPL3). The interaction between TNFRSF21 and APP was analyzed by Co-IP at protein level. Based on the results of ELISA, the levels of inflammatory cytokines TNF-α, IL-5, and IFN-γ in the Tg2576 were higher than that in the JNPL3, but hardly observed in the normal group. The increased APP and inflammatory cytokines in AD model were significantly reduced with TNFRSF21 inhibited. Tg2576 group exhibited higher apoptotic rate of neuron cell and increased number of astrocytes than those of the JNPL3 group. CONCLUSIONS Our studies revealed that APP could promote and bind with TNFRSF21 to regulate the neural inflammatory effects in AD. Inhibiting TNFRSF21 could reduce APP expression and decrease neuroinflammation, which might become potential target for treating AD.
Collapse
|