1
|
Wu ZH, Fan H, Gao SY, Jin YF, Cheng chen, Jiang B, Shen J. Antidepressant-like activity of oroxylin A in mice models of depression: A behavioral and neurobiological characterization. Front Pharmacol 2022; 13:921553. [PMID: 35959431 PMCID: PMC9360618 DOI: 10.3389/fphar.2022.921553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is a mood disorder which causes a huge economic burden to both families and societies. However, those monoamine-based antidepressants used in clinical practice have been found to have various limitations. Therefore, currently it is very necessary to explore novel antidepressant targets and medications. As a main active component extracted from Scutellariae radix, oroxylin A possesses many pharmacological functions such as anti-cancer, anti-inflammation and neuroprotection. Here, the present study aims to investigate whether oroxylin A possess antidepressant-like actions using the chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) models of depression, forced swim test, tail suspension test, open field test, sucrose preference test, western blotting, immunofluorescence and viral-mediated gene interference. Our results revealed that treatment of oroxylin A fully prevented both the CUMS-induced and CRS-induced depressive-like behaviors in mice. Moreover, the protecting effects of oroxylin A against CUMS and CRS on mice behaviors were accompanied with a significant enhancement on the levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase B (pTrkB), phosphorylated cAMP-response element binding protein (pCREB) and neurogenesis in the hippocampus. Furthermore, genetic knockdown of BDNF and TrkB in the hippocampus remarkably abolished the antidepressant-like efficacy of oroxylin A in both the CUMS and CRS models of depression, proving that the hippocampal BDNF-TrkB system participates in the antidepressant mechanism of oroxylin A. In summary, our findings are the first evidence showing that oroxylin A possesses potential of being an antidepressant candidate.
Collapse
|
2
|
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules 2022; 12:biom12050723. [PMID: 35625650 PMCID: PMC9138493 DOI: 10.3390/biom12050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARβ/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Collapse
|
3
|
Zhou G, Fu X, Wang L, Cao Y, Zhuang J, Hu J, Li Y, Xu C, Gao S, Shao A, Wang L. Palmitoylethanolamide ameliorates neuroinflammation via modulating PPAR-α to promote the functional outcome after intracerebral hemorrhage. Neurosci Lett 2022; 781:136648. [DOI: 10.1016/j.neulet.2022.136648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 01/23/2023]
|
4
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
5
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
6
|
Gao S, Zhang X, Xu H, Miao D, Qian J, Wu Z, Shi W. Promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine, a selective norepinephrine reuptake inhibitor. Behav Brain Res 2022; 416:113535. [PMID: 34416301 DOI: 10.1016/j.bbr.2021.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Reboxetine, the first selective norepinephrine (NA) reuptake inhibitor used in the treatment of depression, mainly acts by binding to the NA transporter and blocking reuptake of extracellular NA. Recently, some other pharmacological targets beyond the NA transporter are being demonstrated for reboxetine. Peroxisome proliferator activated receptor α (PPARα) is a member of the nuclear hormone receptor family of ligand-dependent transcription factors. Previous reports have demonstrated the role of hippocampal PPARα in the pathophysiology of depression. Here we assume that hippocampal PPARα may participate in the antidepressant mechanism of reboxetine. Therefore, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, the western blotting and adenovirus associated virus (AAV)-mediated genetic knockdown methods were used together in the present study. Our results showed that repeated reboxetine treatment markedly restored the decreasing effects of CSDS on the expression of hippocampal PPARα, brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (pCREB). Pharmacological blockade of PPARα notably prevented the antidepressant-like effects of reboxetine in the CSDS model. Furthermore, genetic knockdown of hippocampal PPARα also fully abolished the antidepressant-like effects of reboxetine in the CSDS model. Taken together, promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine.
Collapse
Affiliation(s)
- Shangyan Gao
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Xueling Zhang
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China
| | - Hui Xu
- Department of Neurosurgery, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Dongjin Miao
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Jiaoni Qian
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Zhonghua Wu
- Department of Neurosurgery, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China.
| | - Weihua Shi
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Wang YJ, Liu L, Wang Y, Wang JL, Gao TT, Wang H, Chen TT, Guan W, Jiang B. Imipramine exerts antidepressant-like effects in chronic stress models of depression by promoting CRTC1 expression in the mPFC. Brain Res Bull 2020; 164:257-268. [PMID: 32905805 DOI: 10.1016/j.brainresbull.2020.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Recent studies have suggested that CREB-regulated transcription coactivator 1 (CRTC1) plays a role in the pathophysiology of depression. Although imipramine is thought to prevent the reuptake of synaptic serotonin and norepinephrine, its antidepressant-like mechanisms remain elusive. In this study, the effects of imipramine on CRTC1 were studied in several models of depression, including the chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models. We examined whether repeated imipramine administration can reverse the effects of CRS, CUMS and CSDS on CRTC1 expression in both the hippocampus and medial prefrontal cortex (mPFC). Furthermore, genetic knockdown of CRTC1 by CRTC1-shRNA was used to determine whether CRTC1 is necessary for the antidepressant-like effects of imipramine in mice. Our results showed that imipramine reversed the down-regulating effects of CRS, CUMS and CSDS on CRTC1 expression in the mPFC but not the hippocampus, and that CRTC1-shRNA fully abolished the antidepressant-like actions of imipramine in mice. In conclusion, CRTC1 in the mPFC is involved in the antidepressant mechanism of imipramine.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Hao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China.
| |
Collapse
|
8
|
Cao XY, Liu J, Zhang YJ, Wang Y, Xiong JW, Wu J, Chen L. Exposure of adult mice to perfluorobutanesulfonate impacts ovarian functions through hypothyroxinemia leading to down-regulation of Akt-mTOR signaling. CHEMOSPHERE 2020; 244:125497. [PMID: 31809938 DOI: 10.1016/j.chemosphere.2019.125497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Perfluorobutanesulfonate (PFBS), a short-chain perfluoroalkyl substance, is used in many industrial products. Preliminary evidence suggests that exposure to PFBS may increase the risk of infertility. The aim of this study was to investigate the influence of PFBS on ovarian function. Herein, we show that exposure of adult female mice to PFBS (200 mg/kg/day) (PFBS-mice) caused a decrease in the levels of serum total triiodothyronine and thyroxine, which depended on the activation of peroxisome proliferator-activated receptor α (PPARα). The numbers of secondary, early antral and antral follicles were reduced in PFBS-mice with an increase in the atretic follicles, and these changes were recovered by the replacement of L-thyroxinein or the treatment with PPARα antagonist GW6471. PFBS-induced hypothyroxinemia led to a decrease in the levels of Akt, mTOR and p70S6K phosphorylation in ovarian granular cells and cumulus cells, which suppressed the proliferation of these cells and enhanced autophagic death of granular cells and cumulus cells. The levels of serum estradiol and progesterone were reduced in PFBS-mice with a low expression of the steroidogenic genes Star and P450scc in ovarian tissues, which were sensitive to the replacement of L-thyroxinein or the blockade of PPARα. The results indicate that exposure to PFBS (≥200 mg/kg/day) through reducing thyroid hormones causes down-regulation of Akt-mTOR signaling in granular cells and cumulus cells, leading to the deficits in the development of follicles and the biosynthesis of ovarian hormones.
Collapse
Affiliation(s)
- Xin-Yuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Yangzhou Municipal Maternal and Child Health Hospital, Yangzhou, Jiangsu, 225001, China
| | - Ya-Jie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jian-Wei Xiong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|