1
|
Renny A, Sidhic J, Tom A, Kuttithodi AM, Job JT, Rajagopal R, Alfarhan A, Narayanankutty A. Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules 2024; 29:4800. [PMID: 39459169 PMCID: PMC11510445 DOI: 10.3390/molecules29204800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is a physiological condition that when unattended causes serious health concerns over the long term. Several phytocompounds have emerged as promising sources of anti-inflammatory agents. Thottea siliquosa is a traditional medicine for inflammatory and toxicity insults; however, this has not been scientifically confirmed. The purpose of this study is to evaluate the anti-inflammatory properties of T. siliquosa methanol leaf extract in a mouse model. This study investigates the anti-inflammatory activities of a plant extract obtained from leaves of T. siliquosa (TSE) with a focus on carrageenan- and formalin-induced paw oedema in mice. The extract's efficacy was assessed using well-established inflammation models, and the results showed a considerable reduction in paw edema in both cases. In the case of carrageenan model TSE at 50 mg/kg showed a 53.0 ± 2.5% reduction in edema, while those treated with TSM at 100 mg/kg exhibited a 60.0 ± 1.8% reduction (p < 0.01). In the case of a formalin model when a higher dose of TSE (100 mg/kg) was given, paw thickness decreased by 47.04 ± 1.9% on the fifth day and by 64.72 ± 2.2% on the tenth day. LC-MS analysis reported the presence of gallic acid, quinic acid, quercetin, clitorin, myricitrin, retronecine, batatasin II, gingerol, and coumaric acid in the extract. Overall, this study confirms that T. siliquosa extract exerts anti-inflammatory effects in animals and is possibly mediated through the combined effects of these phytochemicals.
Collapse
Affiliation(s)
- Aneeta Renny
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India;
| | - Alby Tom
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| |
Collapse
|
2
|
Rahimi K, Nourishirazi A, Delaviz H, Ghotbeddin Z. Antinociceptive effects of gamma-linolenic acid in the formalin test in the rats. Ann Med Surg (Lond) 2024; 86:2677-2683. [PMID: 38694379 PMCID: PMC11060212 DOI: 10.1097/ms9.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Background Gamma-linolenic acid (GLA) is found in animals and plants that play a role in brain function and metabolism. Objective This study aimed to investigate the analgesic effects of GLA on peripheral formalin injection. Methods Wistar rats were randomly assigned to four groups: Sham, formalin, formalin/GLA 100 mg/kg, and formalin/GLA 150 mg/kg. The Formalin test was utilized to create a pain model. A tissue sample was prepared from the spinal cords of rats to measure oxidative stress parameters and pro-inflammatory cytokines. Furthermore, the authors analyzed the expression of c-Fos protein in the spinal cords. Results Our findings demonstrate that GLA has a reliable pain-relieving effect in the formalin test. GLA 100 increased superoxide dismutase (SOD) (P<0.05), glutathione (GSH) (P<0.001), and catalase (CAT) (P<0.05), and decreased the levels of c-Fos (P<0.001), interleukin-1 beta (IL-1β) (P<0.001), tumour necrosis factor-alpha (TNF-α) (P<0.001), and malondialdehyde (MDA) (P<0.001) in the spinal cord. Also GLA 150 increased SOD (P<0.05), GSH (P<0.001), and CAT (P<0.05) and decreased the levels of c-Fos (P<0.001), IL-1β (P<0.001), TNF-α (P<0.001), and MDA (P<0.001) in the spinal cord. Conclusion The findings have validated the antinociceptive impact of GLA and hinted towards its immunomodulatory influence in the formalin test.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine
| | | | | | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Solon IG, Santos WS, Jesus AA, Garcia FS, Nascimento GC, Cárnio EC, Branco LGS, Santos BM. Non-invasive evaluation of vascular permeability in formalin-induced orofacial pain model using infrared thermography. J Therm Biol 2024; 119:103782. [PMID: 38176292 DOI: 10.1016/j.jtherbio.2023.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Enhanced vascular permeability at the site of injury is a prominent feature in acute inflammatory pain models, commonly assessed through the Evans Blue test. However, this invasive test requires euthanasia, thereby precluding further investigations on the same animal. Due to these limitations, the integration of non-invasive tools such as IRT has been sought. Here, we aimed to evaluate the use of thermography in a common orofacial pain model that employs formalin as a chemical irritant to induce local orofacial inflammation. Male Hannover rats (290-300 g, N = 43) were used. In the first approach, radiometric images were taken before and after formalin administration, assessing temperature changes and extravasated Evans Blue. The second approach included capturing pre- and post-formalin test radiometric images, followed by cytokine measurements in excised vibrissae tissue. Rats were anesthetized for vibrissae tissue collection, allowing correlations between thermographic patterns, nocifensive behavior duration, and cytokine levels in this area. Our findings revealed a positive correlation between local temperature, measured via thermography, and vascular permeability in the contralateral (r2 = 0.3483) and ipsilateral (r2 = 0.4502) side, measured using spectrophotometry. The obtained data supports the notion that thermography-based temperature assessment can effectively evaluate vascular permeability in the orofacial region.
Collapse
Affiliation(s)
- Isabelly G Solon
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wanderson S Santos
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline A Jesus
- Department of General and Specialized Nursing Ribeirão Preto, College of Nursing - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe S Garcia
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin C Cárnio
- Department of General and Specialized Nursing Ribeirão Preto, College of Nursing - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Bruna M Santos
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of General and Specialized Nursing Ribeirão Preto, College of Nursing - University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Alaee E, Pachenari N, Khani F, Semnanian S, Shojaei A, Azizi H. Enhancement of neuronal excitability in the medial prefrontal cortex following prenatal morphine exposure. Brain Res Bull 2023; 204:110803. [PMID: 37913849 DOI: 10.1016/j.brainresbull.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The clinical use and abuse of opioids during human pregnancy have been widely reported. Several studies have demonstrated that opioids cross the placenta in rats during late gestation, and prenatal morphine exposure has been shown to have negative outcomes in cognitive function. The medial prefrontal cortex (mPFC) is believed to play a crucial role in cognitive processes, motivation, and emotion, integrating neural information from several brain areas and sending converted information to other structures. Dysfunctions in this area have been observed in numerous psychiatric and neurological disorders, including addiction. This current study aimed to compare the electrophysiological properties of mPFC neurons in rat offspring prenatally exposed to morphine. Pregnant rats were injected with morphine or saline twice a day from gestational days 11-18. Whole-cell patch-clamp recordings were performed in male offspring on postnatal days 14-18. All recordings were obtained in current-clamp configuration from mPFC pyramidal neurons to assess their electrophysiological properties. The results revealed that prenatal exposure to morphine shifted the resting membrane potential (RMP) to less negative voltages and increased input resistance and duration of action potentials. However, the amplitude, rise slope, and afterhyperpolarization (AHP) amplitude of the first elicited action potentials were significantly decreased in rats prenatally exposed to morphine. Moreover, the sag voltage ratio was significantly decreased in the prenatal morphine group. Our results suggest that the changes observed in the electrophysiological properties of mPFC neurons indicate an elevation in neuronal excitability following prenatal exposure to morphine.
Collapse
Affiliation(s)
- Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Pachenari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Le HTN, Rijal S, Jang SH, Park SA, Park SJ, Jung W, Han SK. Inhibitory Effects of Honokiol on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice. Neuroscience 2023; 521:89-101. [PMID: 37142181 DOI: 10.1016/j.neuroscience.2023.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are known to be abundant in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc). Thus, it has been recognized as an initial synaptic site for regulating orofacial nociceptive stimuli. Honokiol, a principal active ingredient derived from the bark of Magnolia officinalis, has been exploited in traditional remedies with multiple biological effects, including anti-nociception on humans. However, the anti-nociceptive mechanism of honokiol on SG neurons of the Vc remains fully elusive. In this study, effects of honokiol on SG neurons of the Vc in mice were investigated using the whole-cell patch-clamp method. In a concentration-dependent manner, honokiol significantly enhanced frequencies of spontaneous postsynaptic currents (sPSCs) that were independent of action potential generation. Notably, honokiol-induced increase in the frequency of sPSCs was attributed to the release of inhibitory neurotransmitters through both glycinergic and GABAergic pre-synaptic terminals. Furthermore, higher concentration of honokiol induced inward currents that were noticeably attenuated in the presence of picrotoxin (a GABAA receptor antagonist) or strychnine (a glycine receptor antagonist). Honokiol also exhibited potentiation effect on glycine- and GABAA receptor-mediated responses. In inflammatory pain model, the increase in frequency of spontaneous firing on SG neurons induced by formalin was significantly inhibited by the application of honokiol. Altogether, these findings indicate that honokiol might directly affect SG neurons of the Vc to facilitate glycinergic and GABAergic neurotransmissions and modulate nociceptive synaptic transmission against pain. Consequently, the inhibitory effect of honokiol in the central nociceptive system contributes to orofacial pain management.
Collapse
Affiliation(s)
- Ha Thuy Nhung Le
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea; Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Santosh Rijal
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seon Ah Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
6
|
Kong D, Zhang Y, Gao P, Pan C, Deng H, Xu S, Tang D, Xiao J, Jiao Y, Yu W, Wen D. The locus coeruleus input to the rostral ventromedial medulla mediates stress-induced colorectal visceral pain. Acta Neuropathol Commun 2023; 11:65. [PMID: 37062831 PMCID: PMC10108465 DOI: 10.1186/s40478-023-01537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.
Collapse
Affiliation(s)
- Dexu Kong
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Chao Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Haoyue Deng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Chen Q, Dai J, Nan F, Xu J, Chen S. P66shc in the spinal cord is an important contributor in complete Freund's adjuvant induced inflammatory pain in mice. Biochem Biophys Res Commun 2023; 656:63-69. [PMID: 36958256 DOI: 10.1016/j.bbrc.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE The aim of this study is to investigate whether p66shc is involved in inflammatory pain and the potential molecular mechanisms of p66shc in inflammatory pain. METHODS Inflammatory pain model was established by complete Freund's adjuvant (CFA) injection. Paw withdrawal latency (PWL) and paw withdrawal frequency (PWF) was recorded. The expression of spinal p66shc were determined by immunohistochemical staining, immunofluorescence staining. P66shc knockdown was performed by an adeno-associated virus (AAV) vector infusion. NLRP3 inflammasome complexes were determined by Western blot. DHE staining was used to evaluate reactive oxygen species (ROS) generation. RESULTS P66Shc expression was progressively elevated in spinal cord of inflammatory pain mice, and p66Shc knockdown in vivo significantly attenuated CFA injection triggers hyperalgesia. Furthermore, knockdown of p66Shc significantly inhibited ROS production and NOD-like receptor protein 3 (NLRP3) inflammasome activation, which were reversed by a ROS donor (t-BOOH). However, post-treatment with nigericin, a agonist of NLRP3, reversed AAV-shP66shc analgesic effect. CONCLUSION Spinal p66shc may facilitate the development of inflammatory pain by promoting the activation of NLRP3 inflammasome through ROS.
Collapse
Affiliation(s)
- Qianqian Chen
- Reproductive Medicine Center, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fubei Nan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuangdong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Farahani F, Pachenari N, Mohammad Ahmadi-Soleimani S, Azizi H, Semnanian S. Acute morphine injection persistently affects the electrophysiological characteristics of rat locus coeruleus neurons. Neurosci Lett 2023; 795:137048. [PMID: 36603738 DOI: 10.1016/j.neulet.2023.137048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Administration of morphine is associated with critical complications in clinic which primarily includes the development of dependence and tolerance even following a single dose (acute) exposure. Behavioral and electrophysiological studies support the significant role of locus coeruleus (LC) neurons in tolerance and dependence following chronic morphine exposure. The current study was designed to explore the electrophysiological properties of the LC neurons following acute morphine exposure. In-vitro whole-cell patch-clamp recordings were performed in LC neurons 24 h after intraperitoneal morphine injection. Acute morphine injection significantly decreased the spontaneous firing rate of LC neurons, the rising and decay slopes of action potentials, and consequently increased the action potential duration. In addition, morphine treatment did not alter the rheobase current and first spike latency while affected the inhibitory postsynaptic currents elicited in response to orexin-A. In fact, single morphine exposure could inhibit the disinhibitory effect of orexin-A on LC neurons.
Collapse
Affiliation(s)
- Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Pachenari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Evans AK, Defensor E, Shamloo M. Selective Vulnerability of the Locus Coeruleus Noradrenergic System and its Role in Modulation of Neuroinflammation, Cognition, and Neurodegeneration. Front Pharmacol 2022; 13:1030609. [PMID: 36532725 PMCID: PMC9748190 DOI: 10.3389/fphar.2022.1030609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2024] Open
Abstract
Locus coeruleus (LC) noradrenergic (NE) neurons supply the main adrenergic input to the forebrain. NE is a dual modulator of cognition and neuroinflammation. NE neurons of the LC are particularly vulnerable to degeneration both with normal aging and in neurodegenerative disorders. Consequences of this vulnerability can be observed in both cognitive impairment and dysregulation of neuroinflammation. LC NE neurons are pacemaker neurons that are active during waking and arousal and are responsive to stressors in the environment. Chronic overactivation is thought to be a major contributor to the vulnerability of these neurons. Here we review what is known about the mechanisms underlying this neuronal vulnerability and combinations of environmental and genetic factors that contribute to confer risk to these important brainstem neuromodulatory and immunomodulatory neurons. Finally, we discuss proposed and potential interventions that may reduce the overall risk for LC NE neuronal degeneration.
Collapse
Affiliation(s)
- Andrew K. Evans
- School of Medicine, Stanford University, Stanford, CA, United States
| | | | - Mehrdad Shamloo
- School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Adcock KS, Danaphongse T, Jacob S, Rallapalli H, Torres M, Haider Z, Seyedahmadi A, Morrison RA, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation does not improve recovery of forelimb motor or somatosensory function in a model of neuropathic pain. Sci Rep 2022; 12:9696. [PMID: 35690673 PMCID: PMC9188565 DOI: 10.1038/s41598-022-13621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Nerve injury affecting the upper limb is a leading cause of lifelong disability. Damage to the nerves in the arm often causes weakness and somatosensory dysfunction ranging from numbness to pain. Previous studies show that combining brief bursts of electrical vagus nerve stimulation (VNS) with motor or tactile rehabilitation can restore forelimb function after median and ulnar nerve injury, which causes hyposensitivity of the ventral forelimb. Here, we sought to determine whether this approach would be similarly effective in a model of radial nerve injury that produces allodynia in the ventral forelimb. To test this, rats underwent complete transection of the radial nerve proximal to the elbow followed by tubular repair. In the first experiment, beginning ten weeks after injury, rats received six weeks of tactile rehabilitation, consisting of mechanical stimulation of either the dorsal or ventral region of the forepaw in the injured limb, with or without concurrent VNS. In a second experiment, a separate cohort of rats underwent six weeks of forelimb motor rehabilitative training with or without paired VNS. Contrary to findings in previous models of hyposensitivity, VNS therapy fails to improve recovery of either somatosensory or motor function in the forelimb after radial nerve injury. These findings describe initial evidence that pain may limit the efficacy of VNS therapy and thus highlight a characteristic that should be considered in future studies that seek to develop this intervention.
Collapse
Affiliation(s)
- Katherine S Adcock
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Sarah Jacob
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Harshini Rallapalli
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Armin Seyedahmadi
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert A Morrison
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA. .,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA. .,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| |
Collapse
|
11
|
Alaee E, Farahani F, Semnanian S, Azizi H. Prenatal exposure to morphine enhances excitability in locus coeruleus neurons. J Neural Transm (Vienna) 2022; 129:1049-1060. [PMID: 35674919 DOI: 10.1007/s00702-022-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Opioid abuse during pregnancy may have noteworthy effects on the child's behavioral, emotional and cognitive progression. In this study, we assessed the effect of prenatal exposure to morphine on electrophysiological features of locus coeruleus (LC) noradrenergic neurons which is involved in modulating cognitive performance. Pregnant dams were randomly divided into two groups, that is a prenatal saline treated and prenatal morphine-treated group. To this end, on gestational days 11-18, either morphine or saline (twice daily, s.c.) was administered to pregnant dams. Whole-cell patch-clamp recordings were conducted on LC neurons of male offspring. The evoked firing rate, instantaneous frequency and action potentials half-width, and also input resistance of LC neurons significantly increased in the prenatal morphine group compared to the saline group. Moreover, action potentials decay slope, after hyperpolarization amplitude, rheobase current, and first spike latency were diminished in LC neurons following prenatal exposure to morphine. In addition, resting membrane potential, rise slope, and amplitude of action potentials were not changed by prenatal morphine exposure. Together, the current findings show a significant enhancement in excitability of the LC neurons following prenatal morphine exposure, which may affect the release of norepinephrine to other brain regions and/or cognitive performances of the offspring.
Collapse
Affiliation(s)
- Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Noradrenergic innervations of the medial prefrontal cortex mediate empathy for pain in rats via the α1 and β receptors. Behav Brain Res 2022; 426:113828. [DOI: 10.1016/j.bbr.2022.113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
|