1
|
Del Percio C, Lizio R, Lopez S, Noce G, Jakhar D, Carpi M, Bölükbaş B, Soricelli A, Salvatore M, Güntekin B, Yener G, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Salerni M, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Helvacı Yılmaz N, Kıyı İ, Özbek-İşbitiren Y, Frisoni GB, Cuoco S, Barone P, D'Anselmo A, Bonanni L, Biundo R, D'Antonio F, Bruno G, Giubilei F, De Pandis F, Rotondo R, Antonini A, Babiloni C. Resting-state electroencephalographic rhythms depend on sex in patients with dementia due to Parkinson's and Lewy Body diseases: An exploratory study. Neurobiol Dis 2025; 206:106807. [PMID: 39855475 DOI: 10.1016/j.nbd.2025.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are more prevalent in males than females. Furthermore, they typically showed abnormally high delta (< 4 Hz) and low alpha (8-10 Hz) rhythms from resting-state electroencephalographic (rsEEG) activity. Here, we hypothesized that those abnormalities may depend on the patient's sex. An international database provided clinical-demographic-rsEEG datasets for cognitively unimpaired older (Healthy; N = 49; 24 females), PDD (N = 39; 13 females), and DLB (N = 38; 15 females) participants. Each group was stratified into matched female and male subgroups. The rsEEG rhythms were investigated across the individual rsEEG delta, theta, and alpha frequency bands based on the individual alpha frequency peak. The eLORETA freeware was used to estimate cortical rsEEG sources. In the Healthy group, widespread rsEEG alpha source activities were greater in the females than in the males. In the PDD group, widespread rsEEG delta source activities were lower and widespread rsEEG alpha source activities were greater in the females than in the males. In the DLB group, central-parietal rsEEG delta source activities were lower, and posterior rsEEG alpha source activities were greater in the females than in the males. These results suggest sex-dependent hormonal modulation of neuroprotective-compensatory neurophysiological mechanisms in PDD and DLB patients underlying the generation of rsEEG delta and alpha rhythms, which should be considered in the treatment of vigilance dysregulation in those patients.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy.
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Burcu Bölükbaş
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; IBG: International Biomedicine and Genome Center, Izmir, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Medipol University Istanbul Parkinson's Disease and Movement Disorders Center (PARMER), Istanbul, Turkey
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Yağmur Özbek-İşbitiren
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Anita D'Anselmo
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Roberta Biundo
- Department of Neuroscience, University of Padua, Padua, PD, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Francesca De Pandis
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele Roma, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, PD, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy
| |
Collapse
|
2
|
Banihani SA. Role of Lipoic Acid in Testosterone Production in Males. World J Mens Health 2025; 43:41-49. [PMID: 38772537 PMCID: PMC11704161 DOI: 10.5534/wjmh.230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 05/23/2024] Open
Abstract
Testosterone extends its impact beyond sexual function, playing a crucial role in shaping overall male health, including aspects such as muscle mass, bone density, mood regulation, and energy levels. Lipoic acid, a cofactor for specific enzymes, particularly dehydrogenases involved in cellular energy production, has been studied for its impact on testosterone. This comprehensive review systematically scoured PubMed and Scopus databases using the keywords "lipoic acid" and "testosterone." It encompassed all relevant English papers published from November 1971 to the present, including full texts and abstracts, along with research elucidating the biochemical mechanisms linking lipoic acid to testosterone. In summary, lipoic acid consistently restores testosterone levels, offering promise as an intervention in testicular health, especially in cases of testicular toxicity caused by various harmful agents. Its mechanisms encompass nitric oxide enhancement, fortification of testicular antioxidants, elevation of luteinizing hormone, enhancement of steroidogenesis, and the maintenance of energy production. These mechanisms underscore the therapeutic potential of lipoic acid for testicular health.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
3
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Melo JEC, Santos TFO, Santos RS, Franco HS, Monteiro MCN, Bispo JMM, Mendonça MS, Ribeiro AM, Silva RH, Gois AM, Marchioro M, Lins LCRF, Santos JR. Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J Chem Neuroanat 2022; 125:102162. [PMID: 36115503 DOI: 10.1016/j.jchemneu.2022.102162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.
Collapse
Affiliation(s)
- João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Thassya F O Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo S Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Milena C N Monteiro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mylaine S Mendonça
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Murilo Marchioro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|