1
|
Sanchez-Arrones L, Stern CD, Bovolenta P, Puelles L. Sharpening of the anterior neural border in the chick by rostral endoderm signalling. Development 2012; 139:1034-44. [PMID: 22318633 DOI: 10.1242/dev.067934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The anterior border of the neural plate, presumed to contain the prospective peripheral portion (roof) of the prospective telencephalon, emerges within a vaguely defined proneural ectodermal region. Fate maps carried out at HH4 in the chick reveal that this region still produces indistinctly neural, placodal and non-neural derivatives; it does not express neural markers. We examined how the definitive anterior border domain of the rostral forebrain becomes established and comes to display a neural molecular profile, whereas local non-neural derivatives become separated. The process, interpreted as a border sharpening mechanism via intercalatory cell movements, was studied using fate mapping, time-lapse microscopy and in situ hybridization. Separation of neural and non-neural domains proceeds along stages HH4-HH4+, is well advanced at HH5, and is accompanied by a novel dorsoventral intercalation, oriented orthogonal to the border, that distributes transitional cells into molecularly distinct neural and non-neural fields. Meanwhile, neuroectodermal Sox2 expression spreads peripherally from the neighbourhood of the node, reaching the nascent anterior border domain at HH5. We also show that concurrent signals from the endodermal layer are necessary to position and sharpen the neural border, and suggest that FGF8 might be a component of this signalling.
Collapse
Affiliation(s)
- Luisa Sanchez-Arrones
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine, Murcia, Spain.
| | | | | | | |
Collapse
|
2
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|
3
|
de Lussanet MH, Osse JW. An ancestral axial twist explains the contralateral forebrain and the optic chiasm in vertebrates. ANIM BIOL 2012. [DOI: 10.1163/157075611x617102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among the best-known facts of the brain are the contralateral visual, auditory, sensational, and motor mappings in the forebrain. How and why did these evolve? The few theories to this question provide functional answers, such as better networks for visuomotor control. However, these theories contradict the data, as discussed here. Instead we propose that a 90-deg turn on the left side evolved in a common ancestor of all vertebrates. Compensatory migrations of the tissues during development restore body symmetry. Eyes, nostrils and forebrain compensate in the direction of the turn, whereas more caudal structures migrate in the opposite direction. As a result of these opposite migrations the forebrain becomes crossed and inverted with respect to the rest of the nervous system. We show that such compensatory migratory movements can indeed be observed in the zebrafish (Danio rerio) and the chick (Gallus gallus). With a model we show how the axial twist hypothesis predicts that an optic chiasm should develop on the ventral side of the brain, whereas the olfactory tract should be uncrossed. In addition, the hypothesis explains the decussation of the trochlear nerve, why olfaction is non-crossed, why the cerebellar hemispheres represent the ipsilateral bodyside, why in sharks the forebrain halves each represent the ipsilateral eye, why the heart and other inner organs are asymmetric in the body. Due to the poor fossil record, the possible evolutionary scenarios remain speculative. Molecular evidence does support the hypothesis. The findings may shed new insight on the problematic structure of the forebrain.
Collapse
Affiliation(s)
- Marc H.E. de Lussanet
- Institute of Psychology, Westf. Wilhelms-Universität, Fliednerstraße 21, 48149 Münster, Germany
| | - Jan W.M. Osse
- Bennekomseweg 83, 6704 AH Wageningen, The Netherlands
| |
Collapse
|
4
|
Abstract
Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continue migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration, and condensation of these cells. This review elucidates what is currently known about these factors.
Collapse
|
5
|
Bower DV, Sato Y, Lansford R. Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging. Genesis 2011; 49:619-43. [PMID: 21509927 DOI: 10.1002/dvg.20754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022]
Abstract
We describe the development of transgenic quail that express various fluorescent proteins in targeted manners and their use as a model system that integrates advanced imaging approaches with conventional and emerging molecular genetics technologies. We also review the progression and complications of past fate mapping techniques that led us to generate transgenic quail, which permit dynamic imaging of amniote embryogenesis with unprecedented subcellular resolution.
Collapse
Affiliation(s)
- Danielle V Bower
- Department of Biology and the Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
6
|
Sánchez-Arrones L, Ferrán JL, Rodríguez-Gallardo L, Puelles L. Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 2009; 335:43-65. [PMID: 19699194 DOI: 10.1016/j.ydbio.2009.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/23/2009] [Accepted: 08/13/2009] [Indexed: 12/19/2022]
Abstract
We correlated available fate maps for the avian neural plate at stages HH4 and HH8 with the progress of local molecular specification, aiming to determine when the molecular specification maps of the primary longitudinal and transversal domains of the anterior forebrain agree with the fate mapped data. To this end, we examined selected gene expression patterns as they normally evolved in whole mounts and sections between HH4 and HH8 (or HH10/11 in some cases), performed novel fate-mapping experiments within the anterior forebrain at HH4 and examined the results at HH8, and correlated grafts with expression of selected gene markers. The data provided new details to the HH4 fate map, and disclosed some genes (e.g., Six3 and Ganf) whose expression domains initially are very extensive and subsequently retract rostralwards. Apart from anteroposterior dynamics, some genes soon became downregulated at the prospective forebrain floor plate, or allowed to identify an early roof plate domain (dorsoventral pattern). Peculiarities of the telencephalon (initial specification and differentiation of pallium versus subpallium) are contemplated. The basic anterior forebrain subdivisions seem to acquire correlated specification and fate mapping patterns around stage HH8.
Collapse
Affiliation(s)
- Luisa Sánchez-Arrones
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine, Murcia, E30071, Spain
| | | | | | | |
Collapse
|
7
|
Ezin AM, Fraser SE, Bronner-Fraser M. Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Dev Biol 2009; 330:221-36. [PMID: 19332051 PMCID: PMC2717095 DOI: 10.1016/j.ydbio.2009.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 02/09/2009] [Accepted: 03/12/2009] [Indexed: 12/14/2022]
Abstract
In contrast to the classical assumption that neural crest cells are induced in chick as the neural folds elevate, recent data suggest that they are already specified during gastrulation. This prompted us to map the origin of the neural crest and dorsal neural tube in the early avian embryo. Using a combination of focal dye injections and time-lapse imaging, we find that neural crest and dorsal neural tube precursors are present in a broad, crescent-shaped region of the gastrula. Surprisingly, static fate maps together with dynamic confocal imaging reveal that the neural plate border is considerably broader and extends more caudally than expected. Interestingly, we find that the position of the presumptive neural crest broadly correlates with the BMP4 expression domain from gastrula to neurula stages. Some degree of rostrocaudal patterning, albeit incomplete, is already evident in the gastrula. Time-lapse imaging studies show that the neural crest and dorsal neural tube precursors undergo choreographed movements that follow a spatiotemporal progression and include convergence and extension, reorientation, cell intermixing, and motility deep within the embryo. Through these rearrangement and reorganization movements, the neural crest and dorsal neural tube precursors become regionally segregated, coming to occupy predictable rostrocaudal positions along the embryonic axis. This regionalization occurs progressively and appears to be complete in the neurula by stage 7 at levels rostral to Hensen's node.
Collapse
Affiliation(s)
- Akouavi M Ezin
- California Institute of Technology, Division of Biology, Beckman Institute (139-74), 1200 East California Blvd, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
8
|
Rodríguez-Gallardo L, Hidalgo-Sánchez M, Sánchez-Arrones L, Prior L, Puelles L. Quantitative analysis of neural plate thickness and cell density during gastrulation in the chick embryo. Brain Res Bull 2008; 75:310-3. [PMID: 18331890 DOI: 10.1016/j.brainresbull.2007.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/17/2007] [Indexed: 11/28/2022]
Abstract
We quantitatively analyzed the developing prospective neural and non-neural ectoderm during chicken gastrulation on semithin transverse sections. At stage PS8 (primitive streak stage 8 of Lopez-Sanchez et al. [C. Lopez-Sanchez, L. Puelles, V. Garcia-Martinez, L. Rodriguez-Gallardo, Morphological and molecular analysis of the early developing chick requires an expanded series of primitive streak stages, J. Morphol. 264 (2005) 105-116.], equivalent to stage HH4), the thickest area of the ectoderm agrees in extent with the fate-mapped neural plate we had reported previously. The thickness of the median ectoderm is constantly higher up to a distance of 250mum from Hensen's node, and thickness decreases along a mediolateral gradient with a further drop at the prospective lateral border of the neural plate. A higher cell density of the developing ectoderm also coincided with the prospective neural plate. We observed that cell death does not play an important role in the spatial definition of the neural plate.
Collapse
Affiliation(s)
- Lucía Rodríguez-Gallardo
- Departamento de Biología Celular, Facultad de Ciencia, Universidad de Extremadura, Badajoz, Spain.
| | | | | | | | | |
Collapse
|
9
|
Roszko I, Faure P, Mathis L. Stem cell growth becomes predominant while neural plate progenitor pool decreases during spinal cord elongation. Dev Biol 2007; 304:232-45. [PMID: 17258701 DOI: 10.1016/j.ydbio.2006.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 11/20/2006] [Accepted: 12/12/2006] [Indexed: 11/27/2022]
Abstract
The antero-posterior dispersion of clonally related cells is a prominent feature of axis elongation in vertebrate embryos. Two major models have been proposed: (i) the intercalation of cells by convergent-extension and (ii) the sequential production of the forming axis by stem cells. The relative importance of both of these cell behaviors during the long period of elongation is poorly understood. Here, we use a combination of single cell lineage tracing in the mouse embryo, computer modeling and confocal video-microscopy of GFP labeled cells in the chick embryo to address the mechanisms involved in the antero-posterior dispersion of clones. In the mouse embryo, clones appear as clusters of labeled cells separated by intervals of non-labeled cells. The distribution of intervals between clonally related clusters correlates with a statistical model of a stem cell mode of growth only in the posterior spinal cord. A direct comparison with published data in zebrafish suggests that elongation of the anterior spinal cord involves similar intercalation processes in different vertebrate species. Time-lapse analyses of GFP labeled cells in cultured chick embryos suggest a decrease in the size of the neural progenitor pool and indicate that the dispersion of clones involves ordered changes of neighborhood relationships. We propose that a pre-existing stem zone of growth becomes predominant to form the posterior half of the axis. This temporal change in tissue-level motion is discussed in terms of the clonal and genetic continuities during axis elongation.
Collapse
Affiliation(s)
- Isabelle Roszko
- Unité de Biologie Moléculaire du Développement, CNRS URA 2578, France
| | | | | |
Collapse
|
10
|
Puelles L, Fernández-Garre P, Sánchez-Arrones L, García-Calero E, Rodríguez-Gallardo L. Correlation of a chicken stage 4 neural plate fate map with early gene expression patterns. ACTA ACUST UNITED AC 2005; 49:167-78. [PMID: 16111547 DOI: 10.1016/j.brainresrev.2004.12.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/09/2004] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
A number of gene markers are currently claimed to allow positive or negative visualization of the early chick neural plate at stages 3d/4, when its fate becomes determined. Some markers labeled by various authors as either "neural" or "non-neural" indeed show ectodermal expression patterns roughly correlative with widespread yet vague ideas on the shape and size of the early neural plate, based on previous fate maps. However, for technical reasons, it is not clear how precisely these expression patterns correlate with any experimentally determined fate boundaries. An eventual mismatch between fate and marker interpretation might bear importantly on ideas about gene functions and causal hypotheses in issues such as the establishment of the neural/non-neural border or the earliest mechanisms of neural regionalization. In this review, we correlated a set of epiblastic and mesendodermal gene expression patterns with the novel neuroectoderm proportions suggested by our recent fate map of the chick neural plate at stages HH 3d/4 [P. Fernández-Garre, L. Rodriguez-Gallardo, V. Gallego-Diaz, I.S. Alvarez, L. Puelles, Fate map of the chicken neural plate at stage 4, Development 129 (2002) 2807-2822.]. This analysis suggests the existence of various nested subregions of the epiblast with boundaries codefined by given sets of gene patterns. No gene expression studied reproduces exactly or even approximately the entire neural plate shape, leading to a combinatorial hypothesis on its specification. This kind of analysis (fate and molecular maps), jointly with competence maps, provides the basis for understanding gene functions and the mechanisms of neural induction, specification and regionalization. Several gene patterns observed are consistent with precocious incipient regionalization of the neural plate along the dorsoventral and anteroposterior axes.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia (Campus Espinardo), Murcia E30100, Spain.
| | | | | | | | | |
Collapse
|