1
|
Xiao Y, Gao M, He Z, Zheng J, Bai H, Rao JS, Song G, Song W, Li X. Passive activity enhances residual control ability in patients with complete spinal cord injury. Neural Regen Res 2025; 20:2337-2347. [PMID: 39359092 PMCID: PMC11759030 DOI: 10.4103/nrr.nrr-d-23-01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00024/figure1/v/2024-09-30T120553Z/r/image-tiff Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level. However, because of prolonged inactivity, initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway. A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation, as measured by surface electromyography. In this study, we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury. Eleven patients with chronic complete thoracic spinal cord injury were recruited. Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol. The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation. Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity, the difference was not statistically significant. These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
Collapse
Affiliation(s)
- Yanqing Xiao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mingming Gao
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Zejia He
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Jia Zheng
- Cardiac Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Hongming Bai
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guiyun Song
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Wei Song
- Department of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Hankov N, Caban M, Demesmaeker R, Roulet M, Komi S, Xiloyannis M, Gehrig A, Varescon C, Spiess MR, Maggioni S, Basla C, Koginov G, Haufe F, D'Ercole M, Harte C, Hernandez-Charpak SD, Paley A, Tschopp M, Herrmann N, Intering N, Baaklini E, Acquati F, Jacquet C, Watrin A, Ravier J, Merlos F, Eberlé G, Van den Keybus K, Lambert H, Lorach H, Buschman R, Buse N, Denison T, De Bon D, Duarte JE, Riener R, Ijspeert A, Wagner F, Tobler S, Asboth L, von Zitzewitz J, Bloch J, Courtine G. Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept. Sci Robot 2025; 10:eadn5564. [PMID: 40073082 DOI: 10.1126/scirobotics.adn5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.
Collapse
Affiliation(s)
- Nicolas Hankov
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Miroslav Caban
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ONWARD Medical, Lausanne, Switzerland
| | - Robin Demesmaeker
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Margaux Roulet
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Salif Komi
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Michele Xiloyannis
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Anne Gehrig
- VAMED Management and Service Switzerland AG, Zurich, Switzerland
| | - Camille Varescon
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Martina Rebeka Spiess
- Hocoma AG, Volketswil, Switzerland
- ZHAW, Zurich University of Applied Sciences, School of Health Sciences, Institute of Occupational Therapy, Zurich, Switzerland
| | - Serena Maggioni
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Hocoma AG, Volketswil, Switzerland
| | - Chiara Basla
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gleb Koginov
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Myoswiss AG, Zurich, Switzerland
| | - Florian Haufe
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | | | - Cathal Harte
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Sergio D Hernandez-Charpak
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Aurelie Paley
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Manon Tschopp
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Natacha Herrmann
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Nadine Intering
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Edeny Baaklini
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Francesco Acquati
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- ONWARD Medical, Lausanne, Switzerland
| | | | | | - Jimmy Ravier
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Frédéric Merlos
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Eberlé
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Katrien Van den Keybus
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Henri Lorach
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | | | | | | | - Dino De Bon
- VAMED Management and Service Switzerland AG, Zurich, Switzerland
| | | | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Wagner
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux, France
| | - Sebastian Tobler
- Bern University of Applied Science, SCI Mobility Lab, University of Bern, Bienne, Switzerland
- GBY (Go-by-Yourself) SA, Vuisternens-en-Ogoz, Switzerland
| | - Léonie Asboth
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | | | - Jocelyne Bloch
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Grégoire Courtine
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
3
|
Angelin LG, Carreño MNP, Otoch JP, de Resende JCF, Arévalo A, Motta-Teixeira LC, Seelaender MCL, Lepski G. Regeneration and Plasticity Induced by Epidural Stimulation in a Rodent Model of Spinal Cord Injury. Int J Mol Sci 2024; 25:9043. [PMID: 39201729 PMCID: PMC11354918 DOI: 10.3390/ijms25169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Traumatic spinal cord injury is a major cause of disability for which there are currently no fully effective treatments. Recent studies using epidural electrical stimulation have shown significant advances in motor rehabilitation, even when applied during chronic phases of the disease. The present study aimed to investigate the effectiveness of epidural electric stimulation in the motor recovery of rats with spinal cord injury. Furthermore, we aimed to elucidate the neurophysiological mechanisms underlying motor recovery. First, we improved upon the impact spinal cord injury model to cause severe and permanent motor deficits lasting up to 2 months. Next, we developed and tested an implantable epidural spinal cord stimulator device for rats containing an electrode and an implantable generator. Finally, we evaluated the efficacy of epidural electrical stimulation on motor recovery after spinal cord injury in Wistar rats. A total of 60 animals were divided into the following groups: (i) severe injury with epidural electrical stimulation (injury + stim, n = 15), (ii) severe injury without stimulation (group injury, n = 15), (iii) sham implantation without battery (sham, n = 15), and (iv) a control group, without surgical intervention (control, n = 15). All animals underwent weekly evaluations using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale index, inclined plane, and OpenField test starting one week before the lesion and continuing for eight weeks. After this period, the animals were sacrificed and their spinal cords were explanted and prepared for histological analysis (hematoxylin-eosin) and immunohistochemistry for NeuN, β-III-tubulin, synaptophysin, and Caspase 3. Finally, NeuN-positive neuronal nuclei were quantified through stereology; fluorescence signal intensities for β-tubulin, synaptophyin, and Caspase 3 were quantified using an epifluorescence microscope. The injury + stim group showed significant improvement on the BBB scale compared with the injured group after the 5th week (p < 0.05). Stereological analysis showed a significantly higher average count of neural cells in the injury + stim group in relation to the injury group (1783 ± 2 vs. 897 ± 3, p < 0.001). Additionally, fluorescence signal intensity for synaptophysin was significantly higher in the injury + stim group in relation to the injury group (1294 ± 46 vs. 1198 ± 23, p < 0.01); no statistically significant difference was found in β-III-tubulin signal intensity. Finally, Caspase 3 signal intensity was significantly lower in the stim group (727 ± 123) compared with the injury group (1225 ± 87 p < 0.05), approaching levels observed in the sham and control groups. Our data suggest a regenerative and protective effect of epidural electrical stimulation in rats subjected to impact-induced traumatic spinal cord injury.
Collapse
Affiliation(s)
- Leonidas Gomes Angelin
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Marcelo Nelson Páez Carreño
- Microelectronics and Materials Laboratory, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-010, Brazil
| | - Jose Pinhata Otoch
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Joyce Cristina Ferreira de Resende
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Analía Arévalo
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Lívia Clemente Motta-Teixeira
- Laboratory of Neuroplasticity and Behaviour, Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil;
| | - Marilia Cerqueira Leite Seelaender
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Guilherme Lepski
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| |
Collapse
|
4
|
Wouda MF, Løtveit MF, Bengtson EI, Strøm V. The relationship between balance control and thigh muscle strength and muscle activity in persons with incomplete spinal cord injury. Spinal Cord Ser Cases 2024; 10:7. [PMID: 38418466 PMCID: PMC10902359 DOI: 10.1038/s41394-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVES A spinal cord injury (SCI) can compromise the ability to maintain sufficient balance control during activities in an upraised position. The objective of the study was to explore the relationship between balance control and muscle strength and muscle activation in the lower extremities in persons with incomplete SCI (iSCI). SETTING Sunnaas Rehabilitation Hospital, Norway. METHODS Thirteen men and two women with iSCI and 15 healthy, matched controls were included. Performance of the Berg Balance Scale (BBS) short version (7 items) was used to indicate balance control. Maximal voluntary contraction (MVC) was performed to measure isometric muscle strength in thigh muscles (knee extension/flexion), while surface electromyography (EMG) was measured from M. Vastus Lateralis and M. Biceps Femoris. The relative activation of each muscle during each of the BBS tasks was reported as the percentage of the maximal activation during the MVC (%EMGmax). RESULTS The iSCI participants had a significantly lower BBS sum score and up to 40% lower muscle strength in knee- flexion and extension compared to the matched healthy controls. They also exhibited a significantly higher %EMGmax, i.e. a higher muscle activation, during most of the balance tests. Univariate regression analysis revealed a significant association between balance control and mean values of %EMGmax in Biceps Femoris, averaged over the seven BBS tests. CONCLUSIONS The participants with iSCI had poorer balance control, reduced thigh muscle strength and a higher relative muscle activation in their thigh muscles, during balance-demanding activities.
Collapse
Affiliation(s)
- Matthijs Ferdinand Wouda
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway.
| | - Marte Fosvold Løtveit
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Vegard Strøm
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
5
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
6
|
Mukhametova E, Militskova A, Biktimirov A, Kharin N, Semenova E, Sachenkov O, Baltina T, Lavrov I. Consecutive Transcutaneous and Epidural Spinal Cord Neuromodulation to Modify Clinical Complete Paralysis-the Proof of Concept. Mayo Clin Proc Innov Qual Outcomes 2024; 8:1-16. [PMID: 38186923 PMCID: PMC10770429 DOI: 10.1016/j.mayocpiqo.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Objective To evaluate the effect of transcutaneous (tSCS) and epidural electrical spinal cord stimulation (EES) in facilitating volitional movements, balance, and nonmotor functions, in this observational study, tSCS and EES were consecutively tested in 2 participants with motor complete spinal cord injury (SCI). Participants and Methods Two participants (a 48-year-old woman and a 28-year-old man), both classified as motor complete spinal injury, were enrolled in the study. Both participants went through a unified protocol, such as an initial electrophysiological assessment of neural connectivity, consecutive tSCS and EES combined with 8 wks of motor training with electromyography (EMG) and kinematic evaluation. The study was conducted from May 1, 2019, to December 31, 2021. Results In both participants, tSCS reported a minimal improvement in voluntary movements still essential to start tSCS-enabled rehabilitation. Compared with tSCS, following EES showed immediate improvement in voluntary movements, whereas tSCS was more effective in improving balance and posture. Continuous improvement in nonmotor functions was found during tSCS-enabled and then during EES-enabled motor training. Conclusion Results report a significant difference in the effect of tSCS and EES on the recovery of neurologic functions and support consecutive tSCS and EES applications as a potential therapy for SCI. The proposed approach may help in selecting patients with SCI responsive to neuromodulation. It would also help initiate neuromodulation and rehabilitation therapy early, particularly for motor complete SCI with minimal effect from conventional rehabilitation.
Collapse
Affiliation(s)
- Elvira Mukhametova
- Department of Neurology, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN
- Laboratory of Neuromodulation, Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russia
- Laboratory of Movement Physiology, Federal State Institution of Science Institute of Physiology, IP Pavlov, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alena Militskova
- Department of Neurology, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN
- Laboratory of Neuromodulation, Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russia
- Laboratory of Movement Physiology, Federal State Institution of Science Institute of Physiology, IP Pavlov, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Artur Biktimirov
- Center of Neurotechnologies, Virtual, and Augmented Reality Technologies, Department of Neurosurgery, Far Eastern Federal University, Russia
| | - Nikita Kharin
- Laboratory of Shell Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Elena Semenova
- Laboratory of Shell Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Oskar Sachenkov
- Laboratory of Shell Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Tatiana Baltina
- Laboratory of Neuromodulation, Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Igor Lavrov
- Department of Neurology, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Capogrosso M, Balaguer JM, Prat-Ortega G, Verma N, Yadav P, Sorensen E, de Freitas R, Ensel S, Borda L, Donadio S, Liang L, Ho J, Damiani A, Grigsby E, Fields D, Gonzalez-Martinez J, Gerszten P, Weber D, Pirondini E. Supraspinal control of motoneurons after paralysis enabled by spinal cord stimulation. RESEARCH SQUARE 2024:rs.3.rs-3650257. [PMID: 38260333 PMCID: PMC10802737 DOI: 10.21203/rs.3.rs-3650257/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.
Collapse
Affiliation(s)
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Balaguer JM, Prat-Ortega G, Verma N, Yadav P, Sorensen E, de Freitas R, Ensel S, Borda L, Donadio S, Liang L, Ho J, Damiani A, Grigsby E, Fields DP, Gonzalez-Martinez JA, Gerszten PC, Fisher LE, Weber DJ, Pirondini E, Capogrosso M. SUPRASPINAL CONTROL OF MOTONEURONS AFTER PARALYSIS ENABLED BY SPINAL CORD STIMULATION. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23298779. [PMID: 38076797 PMCID: PMC10705627 DOI: 10.1101/2023.11.29.23298779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.
Collapse
Affiliation(s)
- Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Genis Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Nikhil Verma
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Prakarsh Yadav
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Erynn Sorensen
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Roberto de Freitas
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Luigi Borda
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Serena Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- School of Medicine, University of Pittsburgh, Pittsburgh, US
| | - Arianna Damiani
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Daryl P. Fields
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | | | - Peter C. Gerszten
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Lee E. Fisher
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Douglas J. Weber
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, US
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| |
Collapse
|
9
|
Veshchitskii A, Merkulyeva N. Calcium-binding protein parvalbumin in the spinal cord and dorsal root ganglia. Neurochem Int 2023; 171:105634. [PMID: 37967669 DOI: 10.1016/j.neuint.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Parvalbumin is one of the calcium-binding proteins. In the spinal cord, it is mainly expressed in inhibitory neurons; in the dorsal root ganglia, it is expressed in proprioceptive neurons. In contrast to in the brain, weak systematization of parvalbumin-expressing neurons occurs in the spinal cord. The aim of this paper is to provide a systematic review of parvalbumin-expressing neuronal populations throughout the spinal cord and the dorsal root ganglia of mammals, regarding their mapping, co-expression with some functional markers. The data reviewed are mostly concerning rodentia species because they are predominantly presented in literature.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.
| |
Collapse
|
10
|
Goltash S, Stevens SJ, Topcu E, Bui TV. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice. Front Neural Circuits 2023; 17:1176310. [PMID: 37476398 PMCID: PMC10354275 DOI: 10.3389/fncir.2023.1176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a debilitating condition that disrupts the communication between the brain and the spinal cord. Several studies have sought to determine how to revive dormant spinal circuits caudal to the lesion to restore movements in paralyzed patients. So far, recovery levels in human patients have been modest at best. In contrast, animal models of SCI exhibit more recovery of lost function. Previous work from our lab has identified dI3 interneurons as a spinal neuron population central to the recovery of locomotor function in spinalized mice. We seek to determine the changes in the circuitry of dI3 interneurons and motoneurons following SCI in adult mice. Methods After a complete transection of the spinal cord at T9-T11 level in transgenic Isl1:YFP mice and subsequent treadmill training at various time points of recovery following surgery, we examined changes in three key circuits involving dI3 interneurons and motoneurons: (1) Sensory inputs from proprioceptive and cutaneous afferents, (2) Presynaptic inhibition of sensory inputs, and (3) Central excitatory glutamatergic synapses from spinal neurons onto dI3 INs and motoneurons. Furthermore, we examined the possible role of treadmill training on changes in synaptic connectivity to dI3 interneurons and motoneurons. Results Our data suggests that VGLUT1+ inputs to dI3 interneurons decrease transiently or only at later stages after injury, whereas levels of VGLUT1+ remain the same for motoneurons after injury. Levels of VGLUT2+ inputs to dI3 INs and MNs may show transient increases but fall below levels seen in sham-operated mice after a period of time. Levels of presynaptic inhibition to VGLUT1+ inputs to dI3 INs and MNs can rise shortly after SCI, but those increases do not persist. However, levels of presynaptic inhibition to VGLUT1+ inputs never fell below levels observed in sham-operated mice. For some synaptic inputs studied, levels were higher in spinal cord-injured animals that received treadmill training, but these increases were observed only at some time points. Discussion These results suggest remodeling of spinal circuits involving spinal interneurons that have previously been implicated in the recovery of locomotor function after spinal cord injury in mice.
Collapse
|
11
|
Wai G, Zdunowski S, Zhong H, Nielson JL, Ferguson AR, Strand SC, Moseanko R, Hawbecker S, Nout-Lomas YS, Rosenzweig ES, Beattie MS, Bresnahan JC, Tuszynski MH, Roy RR, Edgerton VR. Emergence of functionally aberrant and subsequent reduction of neuromuscular connectivity and improved motor performance after cervical spinal cord injury in Rhesus. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1205456. [PMID: 37378049 PMCID: PMC10291623 DOI: 10.3389/fresc.2023.1205456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Introduction The paralysis that occurs after a spinal cord injury, particularly during the early stages of post-lesion recovery (∼6 weeks), appears to be attributable to the inability to activate motor pools well beyond their motor threshold. In the later stages of recovery, however, the inability to perform a motor task effectively can be attributed to abnormal activation patterns among motor pools, resulting in poor coordination. Method We have tested this hypothesis on four adult male Rhesus monkeys (Macaca mulatta), ages 6-10 years, by recording the EMG activity levels and patterns of multiple proximal and distal muscles controlling the upper limb of the Rhesus when performing three tasks requiring different levels of skill before and up to 24 weeks after a lateral hemisection at C7. During the recovery period the animals were provided routine daily care, including access to a large exercise cage (5' × 7' × 10') and tested every 3-4 weeks for each of the three motor tasks. Results At approximately 6-8 weeks the animals were able to begin to step on a treadmill, perform a spring-loaded task with the upper limb, and reaching, grasping, and eating a grape placed on a vertical stick. The predominant changes that occurred, beginning at ∼6-8 weeks of the recovery of these tasks was an elevated level of activation of most motor pools well beyond the pre-lesion level. Discussion As the chronic phase progressed there was a slight reduction in the EMG burst amplitudes of some muscles and less incidence of co-contraction of agonists and antagonists, probably contributing to an improved ability to selectively activate motor pools in a more effective temporal pattern. Relative to pre-lesion, however, the EMG patterns even at the initial stages of recovery of successfully performing the different motor tasks, the level of activity of most muscle remained higher. Perhaps the most important concept that emerges from these data is the large combinations of adaptive strategies in the relative level of recruitment and the timing of the peak levels of activation of different motor pools can progressively provide different stages to regain a motor skill.
Collapse
Affiliation(s)
- Gregory Wai
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sharon Zdunowski
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hui Zhong
- Rancho Los Amigos National Rehabilitation Center, Rancho Research Institute, Downey, CA, United States
| | - Jessica L. Nielson
- Department of Psychiatry & Behavioral Sciences and the Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sarah C. Strand
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Rod Moseanko
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Hawbecker
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Yvette S. Nout-Lomas
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Michael S. Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark H. Tuszynski
- Veterans Administration Medical Center, La Jolla, CA, United States
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States
| | - Roland R. Roy
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - V. Reggie Edgerton
- Rancho Los Amigos National Rehabilitation Center, Rancho Research Institute, Downey, CA, United States
- Institut Guttmann, Hospital de Neurorehabilitacio, Universitat Autonoma de Barcelona, Badalona, Spain
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Matsukawa K, Iwamoto GA, Mitchell JH, Mizuno M, Kim HK, Williamson JW, Smith SA. Exaggerated renal sympathetic nerve and pressor responses during spontaneously occurring motor activity in hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2023; 324:R497-R512. [PMID: 36779670 DOI: 10.1152/ajpregu.00271.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA. It remains unknown whether the changes in sympathetic nerve activity and hemodynamics during SpMA are altered by hypertension. To test the hypothesis that the responses in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) during SpMA are exaggerated with hypertension, this study aimed to compare the responses in decerebrate, paralyzed SHR, WKY, and normotensive Sprague-Dawley (SD) rats. In all strains, an abrupt increase in RSNA occurred in synchronization with tibial motor discharge (an index of motor activity) and was followed by rises in MAP and heart rate. The centrally evoked increase in RSNA and MAP during SpMA was much greater (306 ± 110%) in SHR than WKY (187 ± 146%) and SD (165 ± 44%). Although resting baroreflex-mediated changes in RSNA were not different across strains, mechanically or pharmacologically induced elevations in MAP attenuated or abolished the RSNA increase during SpMA in WKY and SD but had no effect in SHR. It is likely that the exaggerated sympathetic nerve and pressor responses during SpMA in SHR are induced along a central command pathway independent of the arterial baroreflex and/or result from central command-induced inhibition of the baroreflex.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gary A Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jere H Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Han-Kyul Kim
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jon W Williamson
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Scott A Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
13
|
Gil-Agudo Á, Megía-García Á, Pons JL, Sinovas-Alonso I, Comino-Suárez N, Lozano-Berrio V, Del-Ama AJ. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial. J Neuroeng Rehabil 2023; 20:36. [PMID: 36964574 PMCID: PMC10039497 DOI: 10.1186/s12984-023-01158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In recent years, ambulatory lower limb exoskeletons are being gradually introduced into the clinical practice to complement walking rehabilitation programs. However, the clinical evidence of the outcomes attained with these devices is still limited and nonconclusive. Furthermore, the user-to-robot adaptation mechanisms responsible for functional improvement are still not adequately unveiled. This study aimed to (1) assess the safety and feasibility of using the HANK exoskeleton for walking rehabilitation, and (2) investigate the effects on walking function after a training program with it. METHODS A randomized controlled trial was conducted including a cohort of 23 patients with less than 1 year since injury, neurological level of injury (C2-L4) and severity (American Spinal Cord Injury Association Impairment Scale [AIS] C or D). The intervention was comprised of 15 one-hour gait training sessions with lower limb exoskeleton HANK. Safety was assessed through monitoring of adverse events, and pain and fatigue through a Visual Analogue Scale. LEMS, WISCI-II, and SCIM-III scales were assessed, along with the 10MWT, 6MWT, and the TUG walking tests (see text for acronyms). RESULTS No major adverse events were reported. Participants in the intervention group (IG) reported 1.8 cm (SD 1.0) for pain and 3.8 (SD 1.7) for fatigue using the VAS. Statistically significant differences were observed for the WISCI-II for both the "group" factor (F = 16.75, p < 0.001) and "group-time" interactions (F = 8.87; p < 0.01). A post-hoc analysis revealed a statistically significant increase of 3.54 points (SD 2.65, p < 0.0001) after intervention for the IG but not in the CG (0.7 points, SD 1.49, p = 0.285). No statistical differences were observed between groups for the remaining variables. CONCLUSIONS The use of HANK exoskeleton in clinical settings is safe and well-tolerated by the patients. Patients receiving treatment with the exoskeleton improved their walking independence as measured by the WISCI-II after the treatment.
Collapse
Affiliation(s)
- Ángel Gil-Agudo
- Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Finca la Peraleda s/n, 45071, Toledo, Spain.
- Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain.
- Neurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Toledo, Spain.
| | - Álvaro Megía-García
- Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Finca la Peraleda s/n, 45071, Toledo, Spain
- Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain
- Neurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Toledo, Spain
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - José Luis Pons
- Legs and Walking Lab, Shirley Ryan Ability Laboratory (Formerly Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, USA
- Department of Mechanical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, USA
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Isabel Sinovas-Alonso
- Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Finca la Peraleda s/n, 45071, Toledo, Spain
- Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain
- Neurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Toledo, Spain
| | - Natalia Comino-Suárez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Vicente Lozano-Berrio
- Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Finca la Peraleda s/n, 45071, Toledo, Spain
- Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain
- Neurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Toledo, Spain
| | - Antonio J Del-Ama
- Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Finca la Peraleda s/n, 45071, Toledo, Spain
- Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain
- Neurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Toledo, Spain
- Rey Juan Carlos University, Electronic Technology Area, Móstoles, Spain
| |
Collapse
|
14
|
Sydney-Smith JD, Koltchev AM, Moon LDF, Warren PM. Delayed viral vector mediated delivery of neurotrophin-3 improves skilled hindlimb function and stability after thoracic contusion. Exp Neurol 2023; 360:114278. [PMID: 36455639 DOI: 10.1016/j.expneurol.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Alice M Koltchev
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Lawrence D F Moon
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Philippa M Warren
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
15
|
Burke DA, Morehouse JR, Saraswat Ohri S, Magnuson DS. Unintentional Effects from Housing Enhancement Resulting in Functional Improvement in Spinal Cord-Injured Mice. Neurotrauma Rep 2023; 4:71-81. [PMID: 36726872 PMCID: PMC9886192 DOI: 10.1089/neur.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is well established that both positive and negative housing conditions of laboratory animals can affect behavioral, biochemical, and physiological responses. Housing enhancements have been shown to have beneficial effects on locomotor outcomes in rodents with spinal cord injury (SCI). Subsequent to an unplanned housing enhancement of the addition of a balcony to home cages by animal care personnel at a research facility, a retrospective analysis of multiple SCI studies was performed to determine whether outcomes differed before (four studies, N = 28) and after (four studies, N = 23) the addition of the balcony. Locomotor and morphological differences were compared after a mild-moderate T9 spinal cord contusion injury in wild-type mice. Post-injury assessments of locomotor function for 6 weeks included Basso Mouse Scale (BMS) and treadmill kinematic assessments (week 6). Balcony-housed mice showed greater improvements not only in basic locomotor functions (weight-supported stepping, balance) compared to those in standard housing, but also surpassed mice in standard housing without the balcony in higher-order locomotor recovery outcomes, including BMS late-stage recovery measures (paw, tail, and trunk indices). Additionally, balcony-housed mice had overall higher BMS scores, consistently attained more BMS subscores, and had better treadmill track width and stride length compared to those with no balcony. The housing enhancement of a balcony led to unforeseen consequences and unexpected higher recovery outcomes compared to mice in standard housing. This retrospective study highlights the importance of housing conditions in the key outcomes of locomotor recovery after incomplete contusive SCIs in mice.
Collapse
Affiliation(s)
- Darlene A. Burke
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Address correspondence to: Darlene A. Burke, MS, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY 40292, USA.
| | - Johnny R. Morehouse
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - Sujata Saraswat Ohri
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Howland DR, Trimble SA, Fox EJ, Tester NJ, Spiess MR, Senesac CR, Kleim JA, Spierre LZ, Rose DK, Johns JS, Ugiliweneza B, Reier PJ, Behrman AL. Recovery of walking in nonambulatory children with chronic spinal cord injuries: Case series. J Neurosci Res 2023; 101:826-842. [PMID: 36690607 DOI: 10.1002/jnr.25162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023]
Abstract
The immature central nervous system is recognized as having substantial neuroplastic capacity. In this study, we explored the hypothesis that rehabilitation can exploit that potential and elicit reciprocal walking in nonambulatory children with chronic, severe (i.e., lower extremity motor score < 10/50) spinal cord injuries (SCIs). Seven male subjects (3-12 years of age) who were at least 1-year post-SCI and incapable of discrete leg movements believed to be required for walking, enrolled in activity-based locomotor training (ABLT; clinicaltrials.gov NCT00488280). Six children completed the study. Following a minimum of 49 sessions of ABLT, three of the six children achieved walking with reverse rolling walkers. Stepping development, however, was not accompanied by improvement in discrete leg movements as underscored by the persistence of synergistic movements and little change in lower extremity motor scores. Interestingly, acoustic startle responses exhibited by the three responding children suggested preserved reticulospinal inputs to circuitry below the level of injury capable of mediating leg movements. On the other hand, no indication of corticospinal integrity was obtained with transcranial magnetic stimulation evoked responses in the same individuals. These findings suggest some children who are not predicted to improve motor and locomotor function may have a reserve of adaptive plasticity that can emerge in response to rehabilitative strategies such as ABLT. Further studies are warranted to determine whether a critical need exists to re-examine rehabilitation approaches for pediatric SCI with poor prognosis for any ambulatory recovery.
Collapse
Affiliation(s)
- Dena R Howland
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Shelley A Trimble
- Spinal Cord Injury Outpatient Program, Pediatric NeuroRecovery, Frazier Rehab Institute, Louisville, Kentucky, USA
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Brooks Rehabilitation, Jacksonville, Florida, USA
| | - Nicole J Tester
- Movement Disorders & Neurorestoration Program, Norman Fixel Institute for Neurological Sciences, University of Florida Health, Gainesville, Florida, USA
| | - Martina R Spiess
- ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Occupational Therapy, Winterthur, Switzerland
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Jeffrey A Kleim
- School of Biological and Health Systems Engineering & Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Louise Z Spierre
- University of Florida College of Medicine-Jacksonville, Department of Pediatrics, University of Florida Health Division of Community and Societal Pediatrics, Jacksonville, Florida, USA
| | - Dorian K Rose
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Brooks Rehabilitation, Jacksonville, Florida, USA
| | - Jeffery S Johns
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Paul J Reier
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Andrea L Behrman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
17
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
18
|
Locke KC, Randelman ML, Hoh DJ, Zholudeva LV, Lane MA. Respiratory plasticity following spinal cord injury: perspectives from mouse to man. Neural Regen Res 2022; 17:2141-2148. [PMID: 35259820 PMCID: PMC9083159 DOI: 10.4103/1673-5374.335839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. This field of research is highly clinically relevant. People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched this injury is in animal models, relatively few treatments have broken through the preclinical barrier. The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity research, we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Katherine C. Locke
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Margo L. Randelman
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Daniel J. Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lyandysha V. Zholudeva
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
- Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Michael A. Lane
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| |
Collapse
|
19
|
Pirondini E, Carranza E, Balaguer JM, Sorensen E, Weber DJ, Krakauer JW, Capogrosso M. Poststroke arm and hand paresis: should we target the cervical spinal cord? Trends Neurosci 2022; 45:568-578. [PMID: 35659414 DOI: 10.1016/j.tins.2022.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Despite advances in understanding of corticospinal motor control and stroke pathophysiology, current rehabilitation therapies for poststroke upper limb paresis have limited efficacy at the level of impairment. To address this problem, we make the conceptual case for a new treatment approach. We first summarize current understanding of motor control deficits in the arm and hand after stroke and their shared physiological mechanisms with spinal cord injury (SCI). We then review studies of spinal cord stimulation (SCS) for recovery of locomotion after SCI, which provide convincing evidence for enhancement of residual corticospinal function. By extrapolation, we argue for using cervical SCS to restore upper limb motor control after stroke.
Collapse
Affiliation(s)
- Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Erick Carranza
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erynn Sorensen
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; The Santa Fe Institute, Santa Fe, CA, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol 2022; 357:114178. [PMID: 35878817 DOI: 10.1016/j.expneurol.2022.114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injuries lead to permanent physical impairment despite most often being anatomically incomplete disruptions of the spinal cord. Remaining connections between the brain and spinal cord create the potential for inducing neural plasticity to improve sensorimotor function, even many years after injury. This narrative review provides an overview of the current evidence for spontaneous motor recovery, activity-dependent plasticity, and interventions for restoring motor control to residual brain and spinal cord networks via spinal cord stimulation. In addition to open-loop spinal cord stimulation to promote long-term neuroplasticity, we also review a more targeted approach: closed-loop stimulation. Lastly, we review mechanisms of spinal cord neuromodulation to promote sensorimotor recovery, with the goal of advancing the field of rehabilitation for physical impairments following spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Henderson
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Center for Neurotechnology, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Barra B, Conti S, Perich MG, Zhuang K, Schiavone G, Fallegger F, Galan K, James ND, Barraud Q, Delacombaz M, Kaeser M, Rouiller EM, Milekovic T, Lacour S, Bloch J, Courtine G, Capogrosso M. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat Neurosci 2022; 25:924-934. [PMID: 35773543 DOI: 10.1038/s41593-022-01106-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.
Collapse
Affiliation(s)
- Beatrice Barra
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Conti
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Katie Zhuang
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Katia Galan
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Delacombaz
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mélanie Kaeser
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tomislav Milekovic
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephanie Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Marco Capogrosso
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland. .,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
23
|
Solopova IA, Selionov VA, Blinov EO, Dolinskaya IY, Zhvansky DS, Lacquaniti F, Ivanenko Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. BIOLOGY 2022; 11:biology11050707. [PMID: 35625435 PMCID: PMC9138260 DOI: 10.3390/biology11050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Individual differences in the sensorimotor circuitry play an important role for understanding the nature of behavioral variability and developing personalized therapies. While the spinal network likely requires relatively rigid organization, it becomes increasingly evident that adaptability and inter-individual variability in the functioning of the neuronal circuitry is present not only in the brain but also in the spinal cord. In this study we investigated the relationship between the excitability of pattern generation circuitry and segmental reflexes in healthy humans. We found that the high individual responsiveness of pattern generation circuitries to tonic sensory input in both the upper and lower limbs was related to larger H-reflexes. The results provide further evidence for the importance of physiologically relevant assessments of spinal cord neuromodulation and the individual physiological state of reflex pathways. Abstract The state and excitability of pattern generators are attracting the increasing interest of neurophysiologists and clinicians for understanding the mechanisms of the rhythmogenesis and neuromodulation of the human spinal cord. It has been previously shown that tonic sensory stimulation can elicit non-voluntary stepping-like movements in non-injured subjects when their limbs were placed in a gravity-neutral unloading apparatus. However, large individual differences in responsiveness to such stimuli were observed, so that the effects of sensory neuromodulation manifest only in some of the subjects. Given that spinal reflexes are an integral part of the neuronal circuitry, here we investigated the extent to which spinal pattern generation excitability in response to the vibrostimulation of muscle proprioceptors can be related to the H-reflex magnitude, in both the lower and upper limbs. For the H-reflex measurements, three conditions were used: stationary limbs, voluntary limb movement and passive limb movement. The results showed that the H-reflex was considerably higher in the group of participants who demonstrated non-voluntary rhythmic responses than it was in the participants who did not demonstrate them. Our findings are consistent with the idea that spinal reflex measurements play important roles in assessing the rhythmogenesis of the spinal cord.
Collapse
Affiliation(s)
- Irina A. Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Victor A. Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Egor O. Blinov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Irina Y. Dolinskaya
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Dmitry S. Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Correspondence:
| |
Collapse
|
24
|
Pasquini M, James ND, Dewany I, Coen FV, Cho N, Lai S, Anil S, Carpaneto J, Barraud Q, Lacour SP, Micera S, Courtine G. Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Sci Robot 2022; 7:eabk2378. [PMID: 35353601 DOI: 10.1126/scirobotics.abk2378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous neurorehabilitative, neuroprosthetic, and repair interventions aim to address the consequences of upper limb impairments after neurological disorders. Although these therapies target widely different mechanisms, they share the common need for a preclinical platform that supports the development, assessment, and understanding of the therapy. Here, we introduce a neurorobotic platform for rats that meets these requirements. A four-degree-of-freedom end effector is interfaced with the rat's wrist, enabling unassisted to fully assisted execution of natural reaching and retrieval movements covering the entire body workspace. Multimodal recording capabilities permit precise quantification of upper limb movement recovery after spinal cord injury (SCI), which allowed us to uncover adaptations in corticospinal tract neuron dynamics underlying this recovery. Personalized movement assistance supported early neurorehabilitation that improved recovery after SCI. Last, the platform provided a well-controlled and practical environment to develop an implantable spinal cord neuroprosthesis that improved upper limb function after SCI.
Collapse
Affiliation(s)
- Maria Pasquini
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Inssia Dewany
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Florent-Valéry Coen
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics, Institute of Electrical and MicroEngineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Newton Cho
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Stefano Lai
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy
| | - Selin Anil
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Jacopo Carpaneto
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics, Institute of Electrical and MicroEngineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| |
Collapse
|
25
|
Zheng Y, Zhao D, Xue DD, Mao YR, Cao LY, Zhang Y, Zhu GY, Yang Q, Xu DS. Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electrophysiological improvements and cortical synaptic reconstruction. Neural Regen Res 2022; 17:2036-2042. [PMID: 35142694 PMCID: PMC8848603 DOI: 10.4103/1673-5374.335161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Following a spinal cord injury, there are usually a number of neural pathways that remain intact in the spinal cord. These residual nerve fibers are important, as they could be used to reconstruct the neural circuits that enable motor function. Our group previously designed a novel magnetic stimulation protocol, targeting the motor cortex and the spinal nerve roots, that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury. Here, we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury. Rats underwent surgery to clamp the spinal cord at T10; three days later, the rats were treated with repetitive magnetic stimulation (5 Hz, 25 pulses/train, 20 pulse trains) targeting the nerve roots at the L5–L6 vertebrae. The treatment was repeated five times a week over a period of three weeks. We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord. In addition, the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex. Overall, the results suggest that nerve root magnetic stimulation may be an effective, noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Ye-Ran Mao
- Department of Rehabilitation, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yun Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhang
- Department of Rehabilitation, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yue Zhu
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Yang
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; Rehabilitation Engineering Research Center for Integrated Traditional Chinese and Western Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
26
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
27
|
Goode-Roberts M, Noonan K, Stout D, Calvery M, Brothers K, Doonan NW, Behrman AL. Case Report: Capitalizing on Development and Activity-Dependent Plasticity, an Interaction With Pediatric-Onset Spinal Cord Injury. Front Pediatr 2022; 10:804622. [PMID: 35425730 PMCID: PMC9002091 DOI: 10.3389/fped.2022.804622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) in infancy halts typical development secondary to paralysis/paresis and the limited ability to engage with the environment. Traditional therapies further restrict a child via bracing, equipment, and medications. In contrast, activity-based restorative therapies (ABRT) promote activation of the neuromuscular system below the level of injury and affords a more typical sensorimotor experience. CASE DESCRIPTION A premature male infant exhibiting hypotonia, poor head control, and extremity weakness was diagnosed at age 5 months with a remote incomplete upper cervical SCI based on magnetic resonance imaging (MRI), presumed to have occurred perinatally. From 4 to 15 months of age, he received physical, occupational and speech therapies. Enrolled in an ABRT program at 15 months, he was unable to sit, pull-to-stand, stand, or walk and had upper extremity impairments. Results of the Bayley-III Scales of Infant and Toddler Development revealed gross and fine motor scores consistent with a 4-month-old. METHODS Activity-based restorative therapies was provided 5 day/week: 1.5 h of activity-based locomotor training and 1 h of activity-based occupational therapy. RESULTS Activity-based restorative therapies are reported for 177 sessions and are on-going. Improvements are noted in trunk control, standing, walking, grasp, in-hand manipulation, and associated kinematics. Bayley-III fine motor score improved to that of a 16-month-old and gross motor score to that of a 7-month-old. DISCUSSION While the two treatment periods (i.e., 4-15 months old and 15-24 months) were each ∼9 months, the child's accelerated progress toward typical development during the latter, ABRT period is noteworthy. In comparison to the period of traditional therapies in which paralysis was compounded by a restrictive environment and compensation, ABRT provided a potentially rich sensorimotor experience with an emphasis on active weight-bearing and proper kinematics to activate the neuromuscular system below the lesion in an age-appropriate, task-specific context of activities. Improved physical capacity enabled exploration more typically associated with development at this age expanding the positive impact to other developmental domains.
Collapse
Affiliation(s)
- MacKenzie Goode-Roberts
- UofL Health, Frazier Rehab Institute, Kosair Charities Center for Pediatric NeuroRecovery, Louisville, KY, United States
| | - Kathryn Noonan
- UofL Health, Frazier Rehab Institute, Kosair Charities Center for Pediatric NeuroRecovery, Louisville, KY, United States
| | - Danielle Stout
- UofL Health, Frazier Rehab Institute, Kosair Charities Center for Pediatric NeuroRecovery, Louisville, KY, United States
| | - Margaret Calvery
- Norton Children's Medical Group, Louisville, KY, United States.,Department of Pediatrics, University of Louisville, Louisville, KY, United States
| | - Kyle Brothers
- Norton Children's Research Institute, Affiliated With the University of Louisville School of Medicine, Louisville, KY, United States
| | - Nicole Williams Doonan
- Department of Neurology, Gillette Children's Specialty Healthcare, St. Paul, MN, United States
| | - Andrea L Behrman
- Department of Neurological Surgery, Kosair Charities Endowed Chair in Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
28
|
Steele AG, Atkinson DA, Varghese B, Oh J, Markley RL, Sayenko DG. Characterization of Spinal Sensorimotor Network Using Transcutaneous Spinal Stimulation during Voluntary Movement Preparation and Performance. J Clin Med 2021; 10:jcm10245958. [PMID: 34945253 PMCID: PMC8709482 DOI: 10.3390/jcm10245958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Transcutaneous electrical spinal stimulation (TSS) can be used to selectively activate motor pools based on their anatomical arrangements in the lumbosacral enlargement. These spatial patterns of spinal motor activation may have important clinical implications, especially when there is a need to target specific muscle groups. However, our understanding of the net effects and interplay between the motor pools projecting to agonist and antagonist muscles during the preparation and performance of voluntary movements is still limited. The present study was designed to systematically investigate and differentiate the multi-segmental convergence of supraspinal inputs on the lumbosacral neural network before and during the execution of voluntary leg movements in neurologically intact participants. During the experiments, participants (N = 13) performed isometric (1) knee flexion and (2) extension, as well as (3) plantarflexion and (4) dorsiflexion. TSS consisting of a pair pulse with 50 ms interstimulus interval was delivered over the T12-L1 vertebrae during the muscle contractions, as well as within 50 to 250 ms following the auditory or tactile stimuli, to characterize the temporal profiles of net spinal motor output during movement preparation. Facilitation of evoked motor potentials in the ipsilateral agonists and contralateral antagonists emerged as early as 50 ms following the cue and increased prior to movement onset. These results suggest that the descending drive modulates the activity of the inter-neuronal circuitry within spinal sensorimotor networks in specific, functionally relevant spatiotemporal patterns, which has a direct implication for the characterization of the state of those networks in individuals with neurological conditions.
Collapse
Affiliation(s)
- Alexander G. Steele
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Department of Electrical and Computer Engineering, University of Houston, E413 Engineering Bldg 2, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Darryn A. Atkinson
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, 5401 La Crosse Avenue, Austin, TX 78739, USA
| | - Blesson Varghese
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Jeonghoon Oh
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Rachel L. Markley
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Correspondence: ; Tel.: +1-713-363-9910
| |
Collapse
|
29
|
Flores Á, López-Santos D, García-Alías G. When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:755963. [PMID: 36188826 PMCID: PMC9397786 DOI: 10.3389/fresc.2021.755963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Electrical neuromodulation has strongly hit the foundations of spinal cord injury and repair. Clinical and experimental studies have demonstrated the ability to neuromodulate and engage spinal cord circuits to recover volitional motor functions lost after the injury. Although the science and technology behind electrical neuromodulation has attracted much of the attention, it cannot be obviated that electrical stimulation must be applied concomitantly to sensorimotor rehabilitation, and one would be very difficult to understand without the other, as both need to be finely tuned to efficiently execute movements. The present review explores the difficulties faced by experimental and clinical neuroscientists when attempting to neuromodulate and rehabilitate manual dexterity in spinal cord injured subjects. From a translational point of view, we will describe the major rehabilitation interventions employed in animal research to promote recovery of forelimb motor function. On the other hand, we will outline some of the state-of-the-art findings when applying electrical neuromodulation to the spinal cord in animal models and human patients, highlighting how evidences from lumbar stimulation are paving the path to cervical neuromodulation.
Collapse
Affiliation(s)
- África Flores
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Diego López-Santos
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Guillermo García-Alías
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- Institut Guttmann de Neurorehabilitació, Badalona, Spain
- *Correspondence: Guillermo García-Alías
| |
Collapse
|
30
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
31
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Siddiqui AM, Islam R, Cuellar CA, Silvernail JL, Knudsen B, Curley DE, Strickland T, Manske E, Suwan PT, Latypov T, Akhmetov N, Zhang S, Summer P, Nesbitt JJ, Chen BK, Grahn PJ, Madigan NN, Yaszemski MJ, Windebank AJ, Lavrov IA. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med 2021; 6:66. [PMID: 34671050 PMCID: PMC8528837 DOI: 10.1038/s41536-021-00176-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.
Collapse
Affiliation(s)
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | | | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dallece E Curley
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | | - Emilee Manske
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Scripps College, Claremont, CA, USA
| | - Parita T Suwan
- Paracelsus Medical Private University, Salzburg, Austria
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nafis Akhmetov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shuya Zhang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Priska Summer
- Paracelsus Medical Private University, Salzburg, Austria
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Joffe AR, Khaira G, de Caen AR. The intractable problems with brain death and possible solutions. Philos Ethics Humanit Med 2021; 16:11. [PMID: 34625089 PMCID: PMC8500820 DOI: 10.1186/s13010-021-00107-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/14/2021] [Indexed: 05/21/2023] Open
Abstract
Brain death has been accepted worldwide medically and legally as the biological state of death of the organism. Nevertheless, the literature has described persistent problems with this acceptance ever since brain death was described. Many of these problems are not widely known or properly understood by much of the medical community. Here we aim to clarify these issues, based on the two intractable problems in the brain death debates. First, the metaphysical problem: there is no reason that withstands critical scrutiny to believe that BD is the state of biological death of the human organism. Second, the epistemic problem: there is no way currently to diagnose the state of BD, the irreversible loss of all brain functions, using clinical tests and ancillary tests, given potential confounders to testing. We discuss these problems and their main objections and conclude that these problems are intractable in that there has been no acceptable solution offered other than bare assertions of an 'operational definition' of death. We present possible ways to move forward that accept both the metaphysical problem - that BD is not biological death of the human organism - and the epistemic problem - that as currently diagnosed, BD is a devastating neurological state where recovery of sentience is very unlikely, but not a confirmed state of irreversible loss of all [critical] brain functions. We argue that the best solution is to abandon the dead donor rule, thus allowing vital organ donation from patients currently diagnosed as BD, assuming appropriate changes are made to the consent process and to laws about killing.
Collapse
Affiliation(s)
- Ari R Joffe
- University of Alberta and Stollery Children's Hospital, Division of Pediatric Critical Care, Edmonton, Alberta, Canada.
- University of Alberta, John Dossetor Health Ethics Center, 4-546 Edmonton Clinic Health Academy, 11405 112 Street, Edmonton, Alberta, T6G 1C9, Canada.
| | - Gurpreet Khaira
- University of Alberta and Stollery Children's Hospital, Division of Pediatric Critical Care, Edmonton, Alberta, Canada
| | - Allan R de Caen
- University of Alberta and Stollery Children's Hospital, Division of Pediatric Critical Care, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Megía-García Á, Serrano-Muñoz D, Comino-Suárez N, Del-Ama AJ, Moreno JC, Gil-Agudo A, Taylor J, Gómez-Soriano J. Effect of posture and body weight loading on spinal posterior root reflex responses. Eur J Neurosci 2021; 54:6575-6586. [PMID: 34494329 DOI: 10.1111/ejn.15448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The posterior root muscle response (PRM) is a monosynaptic reflex that is evoked by single pulse transcutaneous spinal cord stimulation (tSCS). The main aim of this work was to analyse how body weight loading influences PRM reflex threshold measured from several lower limb muscles in healthy participants. PRM reflex responses were evoked with 1-ms rectangular monophasic pulses applied at an interval of 6 s via a self-adhesive electrode (9 × 5 cm) at the T11-T12 vertebral level. Surface electromyographic activity of lower limb muscles was recorded during four different conditions, one in decubitus supine (DS) and the other three involving standing at 100%, 50%, and 0% body weight loading (BW). PRM threshold intensity, peak-to-peak amplitude, and latency for each muscle were analysed in different conditions study. PRM reflex threshold increased with body weight unloading compared with DS, and the largest change was observed between DS and 0% BW for the proximal muscles and between DS and 50% BW for distal muscles. Peak-to-peak amplitude analysis showed only a significant mean decrease of 34.6% (SD 10.4, p = 0.028) in TA and 53.6% (SD 15.1, p = 0.019) in GM muscles between DS and 50% BW. No significant differences were observed for PRM latency. This study has shown that sensorimotor networks can be activated with tSCS in various conditions of body weight unloading. Higher stimulus intensities are necessary to evoke reflex response during standing at 50% body weight loading. These results have practical implications for gait rehabilitation training programmes that include body weight support.
Collapse
Affiliation(s)
- Álvaro Megía-García
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Natalia Comino-Suárez
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antonio J Del-Ama
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Rey Juan Carlos University, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel Gil-Agudo
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain
| | - Julian Taylor
- Sensorimotor Function Group, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| |
Collapse
|
35
|
Veshchitskii AA, Musienko PE, Merkulyeva NS. Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Garcia-Ramirez DL, Ha NT, Bibu S, Stachowski NJ, Dougherty KJ. Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse. J Neurosci 2021; 41:5833-5848. [PMID: 34006587 PMCID: PMC8265802 DOI: 10.1523/jneurosci.1576-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCIs) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell type-specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole-cell patch-clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT7 receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT2B/2C receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI.SIGNIFICANCE STATEMENT Current therapies to gain locomotor control after spinal cord injury (SCI) target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.
Collapse
Affiliation(s)
- D Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Ngoc T Ha
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Steve Bibu
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Nicholas J Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
38
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
39
|
Soloukey S, de Rooij JD, Osterthun R, Drenthen J, De Zeeuw CI, Huygen FJPM, Harhangi BS. The Dorsal Root Ganglion as a Novel Neuromodulatory Target to Evoke Strong and Reproducible Motor Responses in Chronic Motor Complete Spinal Cord Injury: A Case Series of Five Patients. Neuromodulation 2021; 24:779-793. [PMID: 32706445 PMCID: PMC8359424 DOI: 10.1111/ner.13235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Current strategies for motor recovery after spinal cord injury (SCI) aim to facilitate motor performance through modulation of afferent input to the spinal cord using epidural electrical stimulation (EES). The dorsal root ganglion (DRG) itself, the first relay station of these afferent inputs, has not yet been targeted for this purpose. The current study aimed to determine whether DRG stimulation can facilitate clinically relevant motor response in motor complete SCI. MATERIALS AND METHODS Five patients with chronic motor complete SCI were implanted with DRG leads placed bilaterally on level L4 during five days. Based on personalized stimulation protocols, we aimed to evoke dynamic (phase 1) and isotonic (phase 2) motor responses in the bilateral quadriceps muscles. On days 1 and 5, EMG-measurements (root mean square [RMS] values) and clinical muscle force measurements (MRC scoring) were used to measure motor responses and their reproducibility. RESULTS In all patients, DRG-stimulation evoked significant phase 1 and phase 2 motor responses with an MRC ≥4 for all upper leg muscles (rectus femoris, vastus lateralis, vastus medialis, and biceps femoris) (p < 0.05 and p < 0.01, respectively), leading to a knee extension movement strong enough to facilitate assisted weight bearing. No significant differences in RMS values were observed between days 1 and 5 of the study, indicating that motor responses were reproducible. CONCLUSION The current paper provides first evidence that bilateral L4 DRG stimulation can evoke reproducible motor responses in the upper leg, sufficient for assisted weight bearing in patients with chronic motor complete SCI. As such, a new target for SCI treatment has surfaced, using existing stimulation devices, making the technique directly clinically accessible.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of NeurosurgeryErasmus MC RotterdamRotterdamThe Netherlands
- Department of NeuroscienceErasmus MC RotterdamRotterdamThe Netherlands
| | - Judith D. de Rooij
- Center for Pain Medicine, Department of AnesthesiologyErasmus MC RotterdamRotterdamThe Netherlands
- Unit of Physiotherapy, Department of OrthopedicsErasmus MC RotterdamRotterdamThe Netherlands
| | - Rutger Osterthun
- Department of Rehabilitation MedicineErasmus MC RotterdamRotterdamThe Netherlands
- Spinal Cord Injury DepartmentRijndam Rehabilitation CenterRotterdamThe Netherlands
| | - Judith Drenthen
- Department of Clinical NeurophysiologyErasmus MC RotterdamRotterdamThe Netherlands
| | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MC RotterdamRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Dutch Academy for Arts and SciencesAmsterdamThe Netherlands
| | - Frank J. P. M. Huygen
- Center for Pain Medicine, Department of AnesthesiologyErasmus MC RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
40
|
Locomotor illusions are generated by perceptual body-environment organization. PLoS One 2021; 16:e0251562. [PMID: 33974677 PMCID: PMC8112709 DOI: 10.1371/journal.pone.0251562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
While one is walking, the stimulation by one's body forms a structure with the stimulation by the environment. This locomotor array of stimulation corresponds to the human-environment relation that one's body forms with the environment it is moving through. Thus, the perceptual experience of walking may arise from such a locomotor array of stimulation. Humans can also experience walking while they are sitting. In this case, there is no stimulation by one's walking body. Hence, one can experience walking although a basic component of a locomotor array of stimulation is missing. This may be facilitated by perception organizing the sensory input about one's body and environment into a perceptual structure that corresponds to a locomotor array of stimulation. We examined whether locomotor illusions are generated by this perceptual formation of a locomotor structure. We exposed sixteen seated individuals to environmental stimuli that elicited either the perceptual formation of a locomotor structure or that of a control structure. The study participants experienced distinct locomotor illusions when they were presented with environmental stimuli that elicited the perceptual formation of a locomotor structure. They did not experience distinct locomotor illusions when the stimuli instead elicited the perceptual formation of the control structure. These findings suggest that locomotor illusions are generated by the perceptual organization of sensory input about one's body and environment into a locomotor structure. This perceptual body-environment organization elucidates why seated human individuals experience the sensation of walking without any proprioceptive or kinaesthetic stimulation.
Collapse
|
41
|
Gill ML, Linde MB, Hale RF, Lopez C, Fautsch KJ, Calvert JS, Veith DD, Beck LA, Garlanger KL, Sayenko DG, Lavrov IA, Thoreson AR, Grahn PJ, Zhao KD. Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Front Syst Neurosci 2021; 14:590231. [PMID: 33584209 PMCID: PMC7875885 DOI: 10.3389/fnsys.2020.590231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Regaining control of movement following a spinal cord injury (SCI) requires utilization and/or functional reorganization of residual descending, and likely ascending, supraspinal sensorimotor pathways, which may be facilitated via task-specific training through body weight supported treadmill (BWST) training. Recently, epidural electrical stimulation (ES) combined with task-specific training demonstrated independence of standing and stepping functions in individuals with clinically complete SCI. The restoration of these functions may be dependent upon variables such as manipulation of proprioceptive input, ES parameter adjustments, and participant intent during step training. However, the impact of each variable on the degree of independence achieved during BWST stepping remains unknown. Objective: To describe the effects of descending intentional commands and proprioceptive inputs, specifically body weight support (BWS), on lower extremity motor activity and vertical ground reaction forces (vGRF) during ES-enabled BWST stepping in humans with chronic sensorimotor complete SCI. Furthermore, we describe perceived changes in the level of assistance provided by clinicians when intent and BWS are modified. Methods: Two individuals with chronic, mid thoracic, clinically complete SCI, enrolled in an IRB and FDA (IDE G150167) approved clinical trial. A 16-contact electrode array was implanted in the epidural space between the T11-L1 vertebral regions. Lower extremity motor output and vertical ground reaction forces were obtained during clinician-assisted ES-enabled treadmill stepping with BWS. Consecutive steps were achieved during various experimentally-controlled conditions, including intentional participation and varied BWS (60% and 20%) while ES parameters remain unchanged. Results: During ES-enabled BWST stepping, the knee extensors exhibited an increase in motor activation during trials in which stepping was passive compared to active or during trials in which 60% BWS was provided compared to 20% BWS. As a result of this increased motor activation, perceived clinician assistance increased during the transition from stance to swing. Intentional participation and 20% BWS resulted in timely and purposeful activation of the lower extremities muscles, which improved independence and decreased clinician assistance. Conclusion: Maximizing participant intention and optimizing proprioceptive inputs through BWS during ES-enabled BWST stepping may facilitate greater independence during BWST stepping for individuals with clinically complete SCI. Clinical Trial Registration:ClinicalTrials.gov identifier: NCT02592668.
Collapse
Affiliation(s)
- Megan L Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Margaux B Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena F Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kalli J Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lisa A Beck
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kristin L Garlanger
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Office for Education Diversity, Equity and Inclusion, Mayo Clinic, Rochester, MN, United States
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
42
|
Greiner N, Barra B, Schiavone G, Lorach H, James N, Conti S, Kaeser M, Fallegger F, Borgognon S, Lacour S, Bloch J, Courtine G, Capogrosso M. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun 2021; 12:435. [PMID: 33469022 PMCID: PMC7815834 DOI: 10.1038/s41467-020-20703-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Epidural electrical stimulation (EES) of lumbosacral sensorimotor circuits improves leg motor control in animals and humans with spinal cord injury (SCI). Upper-limb motor control involves similar circuits, located in the cervical spinal cord, suggesting that EES could also improve arm and hand movements after quadriplegia. However, the ability of cervical EES to selectively modulate specific upper-limb motor nuclei remains unclear. Here, we combined a computational model of the cervical spinal cord with experiments in macaque monkeys to explore the mechanisms of upper-limb motoneuron recruitment with EES and characterize the selectivity of cervical interfaces. We show that lateral electrodes produce a segmental recruitment of arm motoneurons mediated by the direct activation of sensory afferents, and that muscle responses to EES are modulated during movement. Intraoperative recordings suggested similar properties in humans at rest. These modelling and experimental results can be applied for the development of neurotechnologies designed for the improvement of arm and hand control in humans with quadriplegia. The efficacy of epidural electrical stimulation (EES) to engage arm muscles and improve movement after spinal cord injury is still unclear. Here, the authors investigated how EES can recruit upper-limb motor neurons by combining computational modelling with experiments in non-human primates.
Collapse
Affiliation(s)
- Nathan Greiner
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. .,Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Beatrice Barra
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henri Lorach
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland
| | - Nicholas James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Sara Conti
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Melanie Kaeser
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Simon Borgognon
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stéphanie Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marco Capogrosso
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland. .,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Inanici F, Brighton LN, Samejima S, Hofstetter CP, Moritz CT. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2021; 29:310-319. [DOI: 10.1109/tnsre.2021.3049133] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Wang S, Zhang LC, Fu HT, Deng JH, Xu GX, Li T, Ji XR, Tang PF. Epidural electrical stimulation effectively restores locomotion function in rats with complete spinal cord injury. Neural Regen Res 2021; 16:573-579. [PMID: 32985490 PMCID: PMC7996032 DOI: 10.4103/1673-5374.290905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epidural electrical stimulation can restore limb motor function after spinal cord injury by reactivating the surviving neural circuits. In previous epidural electrical stimulation studies, single electrode sites and continuous tetanic stimulation have often been used. With this stimulation, the body is prone to declines in tolerance and locomotion coordination. In the present study, rat models of complete spinal cord injury were established by vertically cutting the spinal cord at the T8 level to eliminate disturbance from residual nerve fibers, and were then subjected to epidural electrical stimulation. The flexible extradural electrode had good anatomical topology and matched the shape of the spinal canal of the implanted segment. Simultaneously, the electrode stimulation site was able to be accurately applied to the L2–3 and S1 segments of the spinal cord. To evaluate the biocompatibility of the implanted epidural electrical stimulation electrodes, GFAP/Iba-1 double-labeled immunofluorescence staining was performed on the spinal cord below the electrodes at 7 days after the electrode implantation. Immunofluorescence results revealed no significant differences in the numbers or morphologies of microglia and astrocytes in the spinal cord after electrode implantation, and there was no activated Iba-1+ cell aggregation, indicating that the implant did not cause an inflammatory response in the spinal cord. Rat gait analysis showed that, at 3 days after surgery, gait became coordinated in rats with spinal cord injury under burst stimulation. The regained locomotion could clearly distinguish the support phase and the swing phase and dynamically adjust with the frequency of stimulus distribution. To evaluate the matching degree between the flexible epidural electrode (including three stimulation contacts), vertebral morphology, and the level of the epidural site of the stimulation electrode, micro-CT was used to scan the thoracolumbar vertebrae of rats before and after electrode implantation. Based on the experimental results of gait recovery using three-site stimulation electrodes at L2–3 and S1 combined with burst stimulation in a rat model of spinal cord injury, epidural electrical stimulation is a promising protocol that needs to be further explored. This study was approved by the Animal Ethics Committee of Chinese PLA General Hospital (approval No. 2019-X15-39) on April 19, 2019.
Collapse
Affiliation(s)
- Song Wang
- School of Medicine, Nankai University, Tianjin; Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Hai-Tao Fu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jun-Hao Deng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gao-Xiang Xu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Tong Li
- Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xin-Ran Ji
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Fahey M, Brazg G, Henderson CE, Plawecki A, Lucas E, Reisman DS, Schmit BD, Hornby TG. The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury. Arch Phys Med Rehabil 2020; 103:S178-S188. [PMID: 33383032 DOI: 10.1016/j.apmr.2020.09.399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 11/02/2022]
Abstract
Long-standing research in animal models and humans with stroke or incomplete spinal cord injury (iSCI) indicate that specific physical training variables, such as the specificity and amount of practice, may influence neurologic recovery and locomotor function. More recent data highlight the contributions of exercise intensity, as estimated indirectly by cardiovascular exertion, as potentially more important than previously considered. The effects of exercise intensity are well described in neurologically intact individuals, although confusion regarding the definitions of intensity and safety concerns have limited its implementation during physical rehabilitation of patients with neurologic injury. The purpose of this review is to delineate some of the evidence regarding the effects of exercise intensity during locomotor training in patients with stroke and iSCI. We provide specific definitions of exercise intensity used within the literature, describe methods used to ensure appropriate levels of exertion, and discuss potential adverse events and safety concerns during its application. Further details on the effects of locomotor training intensity on clinical outcomes, and on neuromuscular and cardiovascular function will be addressed as available. Existing literature across multiple studies and meta-analyses reveals that exercise training intensity is likely a major factor that can influence locomotor function after neurologic injury. To extend these findings, we describe previous attempts to implement moderate to high intensity interventions during physical rehabilitation of patients with neurologic injury, including the utility of specific strategies to facilitate implementation, and to navigate potential barriers that may arise during implementation efforts.
Collapse
Affiliation(s)
- Meghan Fahey
- Rehabilitation Institute of Chicago, Chicago, IL
| | | | - Christopher E Henderson
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN; Rehabilitation Hospital of Indiana, Indianapolis, IN
| | | | - Emily Lucas
- Rehabilitation Hospital of Indiana, Indianapolis, IN
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI
| | - T George Hornby
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN; Rehabilitation Hospital of Indiana, Indianapolis, IN.
| |
Collapse
|
46
|
Tortora S, Tonin L, Chisari C, Micera S, Menegatti E, Artoni F. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers. Front Neurorobot 2020; 14:582728. [PMID: 33281593 PMCID: PMC7705173 DOI: 10.3389/fnbot.2020.582728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Despite the advances in the field of brain computer interfaces (BCI), the use of the sole electroencephalography (EEG) signal to control walking rehabilitation devices is currently not viable in clinical settings, due to its unreliability. Hybrid interfaces (hHMIs) represent a very recent solution to enhance the performance of single-signal approaches. These are classification approaches that combine multiple human-machine interfaces, normally including at least one BCI with other biosignals, such as the electromyography (EMG). However, their use for the decoding of gait activity is still limited. In this work, we propose and evaluate a hybrid human-machine interface (hHMI) to decode walking phases of both legs from the Bayesian fusion of EEG and EMG signals. The proposed hHMI significantly outperforms its single-signal counterparts, by providing high and stable performance even when the reliability of the muscular activity is compromised temporarily (e.g., fatigue) or permanently (e.g., weakness). Indeed, the hybrid approach shows a smooth degradation of classification performance after temporary EMG alteration, with more than 75% of accuracy at 30% of EMG amplitude, with respect to the EMG classifier whose performance decreases below 60% of accuracy. Moreover, the fusion of EEG and EMG information helps keeping a stable recognition rate of each gait phase of more than 80% independently on the permanent level of EMG degradation. From our study and findings from the literature, we suggest that the use of hybrid interfaces may be the key to enhance the usability of technologies restoring or assisting the locomotion on a wider population of patients in clinical applications and outside the laboratory environment.
Collapse
Affiliation(s)
- Stefano Tortora
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Luca Tonin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna, The Biorobotics Institute, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Lewis MJ, Jeffery ND, Olby NJ. Ambulation in Dogs With Absent Pain Perception After Acute Thoracolumbar Spinal Cord Injury. Front Vet Sci 2020; 7:560. [PMID: 33062648 PMCID: PMC7479830 DOI: 10.3389/fvets.2020.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute thoracolumbar spinal cord injury (SCI) is common in dogs frequently secondary to intervertebral disc herniation. Following severe injury, some dogs never regain sensory function to the pelvic limbs or tail and are designated chronically "deep pain negative." Despite this, a subset of these dogs develop spontaneous motor recovery over time including some that recover sufficient function in their pelvic limbs to walk independently without assistance or weight support. This type of ambulation is commonly known as "spinal walking" and can take up to a year or more to develop. This review provides a comparative overview of locomotion and explores the physiology of locomotor recovery after severe SCI in dogs. We discuss the mechanisms by which post-injury plasticity and coordination between circuitry contained within the spinal cord, peripheral sensory feedback, and residual or recovered supraspinal connections might combine to underpin spinal walking. The clinical characteristics of spinal walking are outlined including what is known about the role of patient or injury features such as lesion location, timeframe post-injury, body size, and spasticity. The relationship between the emergence of spinal walking and electrodiagnostic and magnetic resonance imaging findings are also discussed. Finally, we review possible ways to predict or facilitate recovery of walking in chronically deep pain negative dogs. Improved understanding of the mechanisms of gait generation and plasticity of the surviving tissue after injury might pave the way for further treatment options and enhanced outcomes in severely injured dogs.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas a & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
48
|
Al’joboori Y, Massey SJ, Knight SL, Donaldson NDN, Duffell LD. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J Clin Med 2020; 9:jcm9092765. [PMID: 32858977 PMCID: PMC7565331 DOI: 10.3390/jcm9092765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial.
Collapse
Affiliation(s)
- Yazi Al’joboori
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
- Correspondence: ; Tel.: +44-020-3108-4083
| | | | - Sarah L. Knight
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Nick de N. Donaldson
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
| | - Lynsey D. Duffell
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
| |
Collapse
|
49
|
Taccola G, Salazar BH, Apicella R, Hogan MK, Horner PJ, Sayenko D. Selective Antagonism of A1 Adenosinergic Receptors Strengthens the Neuromodulation of the Sensorimotor Network During Epidural Spinal Stimulation. Front Syst Neurosci 2020; 14:44. [PMID: 32760254 PMCID: PMC7372902 DOI: 10.3389/fnsys.2020.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
Although epidural spinal stimulation (ESS) results in promising therapeutic effects in individuals with spinal cord injury (SCI), its potential to generate functional motor recovery varies between individuals and remains largely unclear. However, both preclinical and clinical studies indicate the capacity of electrical and pharmacological interventions to synergistically increase the engagement of spinal sensorimotor networks and regain motor function after SCI. This study explored whether selective pharmacological antagonism of the adenosine A1 receptor subtype synergizes with ESS, thereby increasing motor response. We hypothesized that selective pharmacological antagonism of A1 receptors during ESS would produce facilitatory effects in spinal sensorimotor networks detected as an increased amplitude of spinally-evoked motor potentials and sustained duration of ESS induced activity. Terminal experiments were performed in adult rats using trains of stereotyped pulses at 40 Hz delivered at L5 with the local administration to the cord of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). We demonstrated that ESS combined with the blockage of A1 receptors increased the magnitude of the endogenous modulation and postponed the decay of responses that occur during ESS alone. Although DPCPX significantly increased the yield of repetitive stimulation in intact spinal cords, the effects of A1 antagonism on motor evoked responses after an acute spinal transection was not detected. These studies support the future investigation of the optimal dosage, methods of delivery, and systemic effects of the synergistic application of A1 antagonists and spinal stimulation in the intact and injured spinal cord.
Collapse
Affiliation(s)
- Giuliano Taccola
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Betsy Habeth Salazar
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Rosamaria Apicella
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matthew Kevin Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Philip John Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dimitry Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
50
|
Tortora S, Ghidoni S, Chisari C, Micera S, Artoni F. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. J Neural Eng 2020; 17:046011. [DOI: 10.1088/1741-2552/ab9842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|