1
|
Al Hashami ZS, van der Vegt B, Mourits MJ, Kluiver J, van den Berg A. miRNA-dependent resistance mechanisms to anti-hormonal therapies in estrogen receptor-positive breast cancer patients. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200941. [PMID: 40190354 PMCID: PMC11969448 DOI: 10.1016/j.omton.2025.200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The estrogen receptor (ERα) is expressed in 70%-80% of breast cancers and is a target of endocrine therapy. However, resistance to endocrine therapy poses a significant clinical challenge. MicroRNAs (miRNAs) have emerged as critical players in oncogenesis and as modulators of therapy response. This review provides an overview of miRNAs that modulate anti-hormonal drug responses. We identified 56 miRNAs associated with resistance to endocrine therapy. These miRNAs had a total of 40 proven target genes that were grouped based on their function under currently known resistance mechanisms, including ER modulation, signaling pathway activation, cell-cycle modulation, and other mechanisms. For a limited number of miRNA-target gene interactions, the relevance of the identified target gene(s) was confirmed by copy or rescue of the miRNA-induced phenotype. Overall, this review highlights critical roles of miRNAs as crucial mediators of resistance to anti-hormonal therapy. The identified miRNA-target gene interactions can serve as a foundation for future functional studies exploring the potential of selected miRNAs in overcoming drug resistance, which might improve outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Zainab Salam Al Hashami
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Marian J.E. Mourits
- Department of Gynaecological Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
3
|
Wang E, Henderson M, Yalamanchili P, Cueto J, Islam Z, Dharmani C, Salas M. Potential biomarkers in breast cancer drug development: application of the biomarker qualification evidentiary framework. Biomark Med 2024; 18:265-277. [PMID: 38487948 PMCID: PMC11216506 DOI: 10.2217/bmm-2023-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/26/2024] [Indexed: 06/26/2024] Open
Abstract
Breast cancer treatments have evolved rapidly, and clinically meaningful biomarkers have been used to guide therapy. These biomarkers hold utility within the drug development process to increase the efficiency and effectiveness. To this purpose, the US FDA developed an evidentiary framework. Literature searches conducted of literature published between 2016 and 2022 identified biomarkers in breast cancer. These biomarkers were reviewed for drug development utility through the biomarker qualification evidentiary framework. In the breast cancer setting, several promising biomarkers (ctDNA, Ki-67 and PIK3CA) were identified. There is a need for increased transparency regarding the requirements for qualification of specific biomarkers and increased awareness of the processes involved in biomarker qualification.
Collapse
Affiliation(s)
- Eric Wang
- Daiichi-Sankyo, Inc., Basking Ridge, NJ 07920, USA
| | | | - Priyanka Yalamanchili
- Daiichi-Sankyo, Inc., Basking Ridge, NJ 07920, USA
- Rutgers Institute for Pharmaceutical Industry Fellowships, Piscataway, NJ 08854, USA
| | | | | | | | - Maribel Salas
- Daiichi-Sankyo, Inc., Basking Ridge, NJ 07920, USA
- Center for Real-world Effectiveness & Safety of Therapeutics (CREST), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Tafti A, Shojaei S, Zali H, Karima S, Mohammadi-Yeganeh S, Mondanizadeh M. A systems biology approach and in vitro experiment indicated Rapamycin targets key cancer and cell cycle-related genes and miRNAs in triple-negative breast cancer cells. Mol Carcinog 2023; 62:1960-1973. [PMID: 37787375 DOI: 10.1002/mc.23628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
An anticancer drug known as Rapamycin acts by inhibiting the mammalian target of the Rapamycin pathway. This agent has recently been investigated for its potential therapeutic benefits in sensitizing drug-resistant breast cancer (BC) treatment. The molecular mechanism underlying these effects, however, is still a mystery. Using a systems biology method and in vitro experiment, this study sought to discover essential genes and microRNAs (miRNAs) targeted by Rapamycin in triple-negative BC (TNBC) cells to aid prospective new medications with less adverse effects in BC treatment. We developed the transcription factor-miRNA-gene and protein-protein interaction networks using the freely accessible microarray data sets. FANMOD and MCODE were utilized to identify critical regulatory motifs, clusters, and seeds. Then, functional enrichment analyses were conducted. Using topological analysis and motif detection, the most important genes and miRNAs were discovered. We used quantitative real-time polymerase chain reaction (qRT-PCR) to examine the effect of Rapamycin on the expression of the selected genes and miRNAs to verify our findings. We performed flow cytometry to investigate Rapamycin's impact on cell cycle and apoptosis. Furthermore, wound healing and migration assays were done. Three downregulated (PTGS2, EGFR, VEGFA) and three upregulated (c-MYC, MAPK1, PIK3R1) genes were chosen as candidates for additional experimental verification. There were also three upregulated miRNAs (miR-92a, miR-16, miR-20a) and three downregulated miRNAs (miR-146a, miR-145, miR-27a) among the six selected miRNAs. The qRT-PCR findings in MDA-MB-231 cells indicated that c-MYC, MAPK1, PIK3R1, miR-92a, miR-16, and miR-20a expression levels were considerably elevated following Rapamycin treatment, whereas PTGS2, EGFR, VEGFA, miR-146a, and miR-145 expression levels were dramatically lowered (p < 0.05). These genes are engaged in cancer pathways, transcriptional dysregulation in cancer, and cell cycle, according to the top pathway enrichment findings. Migration and wound healing abilities of the cells declined after Rapamycin treatment, and the number of apoptotic cells increased. We demonstrated that Rapamycin suppresses cell migration and metastasis in the TNBC cell line. In addition, our data indicated that Rapamycin induces apoptosis in this cell line. The discovered vital genes and miRNAs affected by Rapamycin are anticipated to have crucial roles in the pathogenesis of TNBC and its therapeutic resistance.
Collapse
Affiliation(s)
- Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
6
|
Abbate JM, Arfuso F, Riolo K, Capparucci F, Brunetti B, Lanteri G. Epigenetics in Canine Mammary Tumors: Upregulation of miR-18a and miR-18b Oncogenes Is Associated with Decreased ERS1 Target mRNA Expression and ERα Immunoexpression in Highly Proliferating Carcinomas. Animals (Basel) 2023; 13:ani13061086. [PMID: 36978627 PMCID: PMC10044548 DOI: 10.3390/ani13061086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The expression of miRNAs is one of the main epigenetic mechanisms responsible for the regulation of gene expression in mammals, and in cancer, miRNAs participate by regulating the expression of protein-coding cancer-associated genes. In canine mammary tumors (CMTs), the ESR1 gene encodes for ERα, and represents a major target gene for miR-18a and miR-18b, previously found to be overexpressed in mammary carcinomas. A loss in ERα expression in CMTs is commonly associated with poor prognosis, and it is noteworthy that the downregulation of the ESR1 would appear to be more epigenetic than genetic in nature. In this study, the expression of ESR1 mRNA in formalin-fixed, paraffin-embedded (FFPE) canine mammary tumors (CMTs) was evaluated and compared with the expression levels of miR18a and miR18b, both assessed via RT-qPCR. Furthermore, the possible correlation between the miRNA expression data and the immunohistochemical prognostic factors (ERα immunoexpression; Ki67 proliferative index) was explored. A total of twenty-six FFPE mammary samples were used, including 22 CMTs (7 benign; 15 malignant) and four control samples (three normal mammary glands and one case of lobular hyperplasia). The obtained results demonstrate that miR-18a and miR-18b are upregulated in malignant CMTs, negatively correlating with the expression of target ESR1 mRNA. Of note, the upregulation of miRNAs strictly reflects the progressive loss of ERα immunoexpression and increased tumor cell proliferation as measured using the Ki67 index. The results suggest a central role of miR-18a and miR-18b in the pathophysiology of canine mammary tumors as potential epigenetic mechanisms involved in ERα downregulation. Moreover, as miRNA expression reflects ERα protein status and a high proliferative index, miR-18a and miR-18b may represent promising biomarkers with prognostic value. More detailed investigations on a larger number of cases are needed to better understand the influence of these miRNAs in canine mammary tumors.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
7
|
Bioinformatics Analysis Reveals the Related Role of miR-511-5p in the Progression of Breast Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7146338. [PMID: 35186236 PMCID: PMC8853816 DOI: 10.1155/2022/7146338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Breast cancer remains a dangerous disease, and delving the molecular mechanism of breast cancer is still necessary. To illustrate the role of miR-511-5p, TCGA database was used to excavate the abundance of miR-511-5p, and the miR-511-5p level was measured in the pathological tissues and tumor cell lines. Moreover, the targets of miR-511-5p were identified with miRDIP and GEPIA and then were used for functional enrichment analysis. Besides, the targets of miR-511-5p were analyzed with the protein-protein interaction (PPI) network for the hub nodes, and then the expression levels of the hub nodes were visualized with the GEPIA database. The results showed that miR-511-5p was significantly downregulated in multiple types of tumor samples in the online database, and the downregulated miR-511-5p was also found in pathological tissues and tumor cell lines. Moreover, 48 genes were identified as the potential targets of miR-511-5p by miRDIP and GEPIA databases and enriched in cell cycle, PI3K/AKT, and P53 pathways. Besides, seven genes including BRCA1, FN1, CCNE1, CCND1, CHEK1, BUB3, and CDC25A were identified as the hub nodes by the PPI network, and CCNE1 and CHEK1 were confirmed to be related with the prognostic survival of the patients with breast cancer. In conclusion, the proofs in this study suggest that reduced miR-511-5p was a biomarker event for breast cancer, and CCNE1 and CHEK1 served as potential targets of miR-511-5p to involve the progression of breast cancer.
Collapse
|
8
|
Tommasi C, Pellegrino B, Boggiani D, Sikokis A, Michiara M, Uliana V, Bortesi B, Bonatti F, Mozzoni P, Pinelli S, Squadrilli A, Viani MV, Cassi D, Maglietta G, Meleti M, Musolino A. Biological Role and Clinical Implications of microRNAs in BRCA Mutation Carriers. Front Oncol 2021; 11:700853. [PMID: 34552867 PMCID: PMC8450578 DOI: 10.3389/fonc.2021.700853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Women with pathogenic germline mutations in BRCA1 and BRCA2 genes have an increased risk to develop breast and ovarian cancer. There is, however, a high interpersonal variability in the modality and timing of tumor onset in those subjects, thus suggesting a potential role of other individual’s genetic, epigenetic, and environmental risk factors in modulating the penetrance of BRCA mutations. MicroRNAs (miRNAs) are small noncoding RNAs that can modulate the expression of several genes involved in cancer initiation and progression. MiRNAs are dysregulated at all stages of breast cancer and although they are accessible and evaluable, a standardized method for miRNA assessment is needed to ensure comparable data analysis and accuracy of results. The aim of this review was to highlight the role of miRNAs as potential biological markers for BRCA mutation carriers. In particular, biological and clinical implications of a link between lifestyle and nutritional modifiable factors, miRNA expression and germline BRCA1 and BRCA2 mutations are discussed with the knowledge of the best available scientific evidence.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Daniela Boggiani
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Angelica Sikokis
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Maria Michiara
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Francesco Bonatti
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna Squadrilli
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Maria Vittoria Viani
- Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diana Cassi
- Unit of Dentistry and Oral-Maxillo-Facial Surgery, Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Maglietta
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy.,Research and Innovation Unit, University Hospital of Parma, Parma, Italy
| | - Marco Meleti
- Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| |
Collapse
|
9
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
10
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
11
|
Tian T, Yang Q, Zhang C, Li X, Cheng J. MiRNA-107 enhances the malignant progression of pancreatic cancer by targeting TGFBR3. PLoS One 2021; 16:e0249375. [PMID: 34010341 PMCID: PMC8133469 DOI: 10.1371/journal.pone.0249375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Background The prognosis of pancreatic cancer (PC) is relatively dismal due to the lack of effective therapy. In this study, we explored the specific functions and molecular mechanisms of miR-107 to uncover effective therapeutic targets for PC. Method The miR-107 expression in PC cell lines was assessed via quantitative real-time polymerase chain reaction (qRT-PCR). Besides, online bioinformatics analysis was adopted to predict the underlying targets of miR-107. Meanwhile, TCGA database was employed to explore the prognosis of PC patients. In addition, MTT and transwell assays were conducted to explore the PC cells’ biological functions. Result MiR-107 was remarkably increased in PC cells which could promote the proliferation, invasion and migration of PC cells. In addition, miR-107 could directly down-regulate TGFBR3 expression through binding to TGFBR3 3’UTR. Survival analysis from TCGA suggested that PC patients with higher miR-107 expression was significantly involved in poorer prognosis. Conclusion We concluded that miR-107 promoted proliferation, invasion and migration of PC cells via targeting TGFBR3, which may provide novel underlying therapeutic targets.
Collapse
Affiliation(s)
- Tingke Tian
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Quanzhong Yang
- Sanquan College of Xinxiang Medical College Basic Medical College, Xinxiang City, Henan Province, China
| | - Cuijuan Zhang
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Xiaokun Li
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Jiancheng Cheng
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
12
|
Abstract
Tuberculosis (TB) is the leading cause of death caused by single pathogenic microorganism, Mycobacterium tuberculosis (MTB). The study aims to explore the associations of microRNA (miRNA) single-nucleotide polymorphisms (SNPs) with pulmonary TB (PTB) risk. A population-based case−control study was conducted, and 168 newly diagnosed smear-positive PTB cases and 251 non-TB controls were recruited. SNPs located within miR-27a (rs895819), miR-423 (rs6505162), miR-196a-2 (rs11614913), miR-146a (rs2910164), miR-618 (rs2682818) were selected and MassARRAY® MALDI-TOF System was employed for genotyping. SPSS19.0 was adopted for statistical analysis, non-conditional logistic regression was performed. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were computed to estimate the associations. Associations of haplotypes with PTB risk were performed with online tool. Rs895819 CT/CC genotype was associated with reduced PTB risk among female population (OR = 0.45, 95% CI: 0.23–0.98), P = 0.045. Haplotypes (combined with rs895819, rs2682818, rs2910164, rs6505162 and rs11614913) TCCCT, TAGCC, CCCCC, CCGCT and TCGAT were associated with reduced PTB risk and the ORs were 0.67 (95% CI: 0.45–0.99), 0.49 (0.25–0.94), 0.34 (95% CI: 0.14–0.81), 0.22 (95% CI: 0.06–0.84) and 0.24 (95% CI: 0.07–0.79), respectively; while the haplotypes of TAGCT, CCCCT, CACCT and TCCAT were associated with increased PTB risk, and the ORs were 3.63 (95% CI: 1.54–8.55), 2.20 (95% CI: 1.00–4.86), 3.90 (95% CI: 1.47–10.36) and 2.95 (95% CI: 1.09–7.99), respectively. Rs895819 CT/CC genotype was associated with reduced female PTB risk and haplotype TCCCT, TAGCC, CCCCC, CCGCT and TCGAT were associated with reduced PTB risk, while TAGCT, CCCCT, CACCT and TCCAT were associated with increased risk.
Collapse
|
13
|
Biological Activity of Selected Compounds from Annona muricata Seed as Antibreast Cancer Agents: Theoretical Study. J CHEM-NY 2020. [DOI: 10.1155/2020/6735232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several natural products have been of help to humans, and its effect is noticeable in the medicinal world. Soursop with botanical name Annona muricata L. possesses antidiarrhea, anticold fever, antirheumatism, and antineuralgia properties. In this work, five selected molecular compounds were studied against type 3 of 3α-hydroxysteroid dehydrogenase (3α-HSD). Its anticancer activity was investigated using the quantum chemical method via Spartan 14 software, molecular docking via Discovery studio 2017, AutoDock Tool 1.5.6, AutoDock Vina 1.1.2, and PyMol 1.7.4.4 and the molecular dynamic simulation method via AMBER14 molecular dynamics package. Many descriptors (EHOMO, ELUMO, dipole moment, energy bandgap, area, volume, polarizability, polar surface area, Log P, hydrogen bond donor, and hydrogen bond acceptor) which describe the anticancer activity of the studied compounds were obtained. Also, the docking study revealed the inhibiting ability of the studied compound, and it was observed that compound C possesses a greater ability to inhibit than other studied compounds as well as the standard (5FU).
Collapse
|
14
|
Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M, Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer-Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int J Mol Sci 2020; 21:ijms21207691. [PMID: 33080858 PMCID: PMC7589921 DOI: 10.3390/ijms21207691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer, which is the most common malignancy in women, does not form a uniform nosological unit but represents a group of malignant diseases with specific clinical, histopathological, and molecular characteristics. The increasing knowledge of the complex pathophysiological web of processes connected with breast cancercarcinogenesis allows the development of predictive and prognostic gene expressionand molecular classification systems with improved risk assessment, which could be used for individualized treatment. In our review article, we present the up-to-date knowledge about the role of miRNAs and their prognostic and predictive value in luminal A breast cancer. Indeed, an altered expression profile of miRNAs can distinguish not only between cancer and healthy samples, but they can classify specific molecular subtypes of breast cancer including HER2, Luminal A, Luminal B, and TNBC. Early identification and classification of breast cancer subtypes using miRNA expression profilescharacterize a promising approach in the field of personalized medicine. A detection of sensitive and specific biomarkers to distinguish between healthy and early breast cancer patients can be achieved by an evaluation of the different expression of several miRNAs. Consequently, miRNAs represent a potential as good diagnostic, prognostic, predictive, and therapeutic biomarkers for patients with luminal A in the early stage of BC.
Collapse
Affiliation(s)
- Erik Kudela
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
- Correspondence: ; Tel.: +421-9-0230-0017
| | - Marek Samec
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Erik Kozubik
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Tomas Rokos
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Terezia Pribulova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| |
Collapse
|
15
|
Moradi MT, Fallahi H, Rahimi Z. The clinical significance of circulating DSCAM-AS1 in patients with ER-positive breast cancer and construction of its competitive endogenous RNA network. Mol Biol Rep 2020; 47:7685-7697. [DOI: 10.1007/s11033-020-05841-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
16
|
Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor. Cancers (Basel) 2020; 12:cancers12082162. [PMID: 32759784 PMCID: PMC7465269 DOI: 10.3390/cancers12082162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.
Collapse
|
17
|
Zhu B, Chen W, Fu Y, Cui X, Jin L, Chao J, Yun X, Gao P, Shan S, Li J, Yin X, Zhu C, Qin X. MicroRNA-27a-3p Reverses Adriamycin Resistance by Targeting BTG2 and Activating PI3K/Akt Pathway in Breast Cancer Cells. Onco Targets Ther 2020; 13:6873-6884. [PMID: 32764979 PMCID: PMC7368588 DOI: 10.2147/ott.s256153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Aim This study aimed to explore the regulative mechanisms of miR-27a-3p in chemo-resistance of breast cancer cells. Materials and Methods qRT-PCR was employed to determine miR-27a-3p expression in two breast cancer cell lines, MCF-7 and MCF-7/adriamycin-resistant cell line (MCF-7/ADR). The two cell lines were treated with miR-27a-3p mimics or inhibitors or corresponding negative control (NC), respectively. The changes were investigated by qRT-PCR, CCK-8 assay, Western blot (WB), colony formation assay, and flow cytometry assay. Moreover, luciferase reporter assay was analyzed to verify the downstream target gene of miR-27a-3p. Further investigation in the correlation between miR-27a-3p and BTG2 was launched by WB, flow cytometry assay, and CCK-8 assay. The expression of Akt and p-Akt was detected by WB. Key Findings Significantly higher miR-27a-3p expression was confirmed in MCF-7/ADR as compared with sensitive cell line MCF-7 (P<0.05). The down-regulation of miR-27a-3p in MCF-7/ADR enhanced the sensitivity of cancer cells to adriamycin treatment, decreased multidrug resistance gene 1/P-glycoprotein (MDR1/P-gp) expression, enhanced the apoptosis-related proteins expression, increased adriamycin-induced apoptosis, and inhibited cell proliferation as compared to NC groups (P<0.05). The up-regulation of miR-27a-3p in MCF-7 showed the opposite results. BTG2 is identified as a direct target of miR-27a-3p and its down-regulation reversed ADR-resistance. BTG2 treatment exhibited inhibitory effect on PI3K/Akt pathway in MCF-7/ADR cells. Significance miR-27a-3p might be associated with resistance of breast cancer cells to adriamycin treatments, modulating cell proliferation and apoptosis by targeting BTG2 and promoting the PI3K/Akt pathway in breast cancer cells. miR-27a-3p/BTG2 axis might be a potential therapeutic target for clinical BC resistance.
Collapse
Affiliation(s)
- Bei Zhu
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Weixian Chen
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Yue Fu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Lei Jin
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Jiadeng Chao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiao Yun
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Peng Gao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Dalian Medical University, Dalian 116023, People's Republic of China
| | - Shiting Shan
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Jun Li
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Dalian Medical University, Dalian 116023, People's Republic of China
| | - Xu Yin
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| |
Collapse
|
18
|
Li JW, Ren SH, Ren JR, Zhen ZG, Li LR, Hao XD, Ji HM. Nimodipine Improves Cognitive Impairment After Subarachnoid Hemorrhage in Rats Through IncRNA NEAT1/miR-27a/MAPT Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2295-2306. [PMID: 32606599 PMCID: PMC7293909 DOI: 10.2147/dddt.s248115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is a cerebral hemorrhage disease that severely damages the brain and causes cognitive impairment (CI). Therefore, accurate and appropriate treatment strategies are urgently needed. The application of nimodipine can not only improve blood circulation in patients with SAH but also repair ischemic neuron injury. Purpose To investigate the effects of nimodipine and lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-27a/microtubule-associated protein tau (MAPT) axis on CI after SAH. Methods One hundred and twenty healthy male rats were selected and equally divided into control group, sham operation group, model group, PBS group, nimodipine group (drug group), NC siRNA group, NC mimics group, NEAT1 siRNA, miR-27a mimics, MAPT siRNA, drug + NEAT1-ad, and drug + NC-ad groups by random number table. Rats in the model group were constructed by double-hemorrhage model, and expression vectors were injected into the tail to regulate the expression of lncRNA NEAT1, miR-27a and MAPT. In addition, Western blot was employed to detect brain tissue protein, flow cytometry was applied to measure brain tissue apoptosis, and MTT was utilized to determine cell activity, so as to evaluate brain damage and cognitive function in each group. Results Nimodipine, down-regulated lncRNA NEAT1, up-regulated miR-27a and down-regulated MAPT all improved brain damage and CI, inhibited brain tissue cell apoptosis, and enhanced brain cell activity. The common binding sites of lncRNA NEAT1 and MAPT were found on the miR-27a sequence fragment, and miR-27a could be paired with the former two. Nimodipine was found to cause the down-regulation of lncRNA NEAT1 and MAPT, as well as the up-regulation of miR-27a. Conclusion Nimodipine can improve CI after SAH in rats through the lncRNA NEAT1/miR-27a/MAPT axis.
Collapse
Affiliation(s)
- Jun-Wei Li
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Shao-Hua Ren
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Jin-Rui Ren
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Zi-Gang Zhen
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Li-Rong Li
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Xu-Dong Hao
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Hong-Ming Ji
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
19
|
Gao JB, Zhu MN, Zhu XL. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio 2019; 9:1957-1967. [PMID: 31538724 PMCID: PMC6823282 DOI: 10.1002/2211-5463.12733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that miR-215-5p acts as a tumor suppressor in certain cancers, but its role in the progression and metastasis of breast carcinoma remains incompletely understood. Herein, we prove that miR-215-5p is substantially down-expressed in breast carcinoma as compared with nontumor tissue. Up-regulation of miR-215-5p inhibits the aggressive abilities of breast carcinoma cells in vitro. We performed luciferase reporter tests to show that SRY-Box 9 (Sox9) is the target of miR-215-5p; as predicted, Sox9 depletion replicates the suppressive effects of miR-215-5p on breast carcinoma cells, and overexpression of Sox9 rescues the effects of miR-215-5p on breast cancer cell progression. In addition, a xenograft model assay was used to reveal that miR-215-5p inhibits breast cancer cell growth and metastatic potential in vivo. Overall, these results imply that miRNA-215-5p suppresses the aggressiveness of breast cancer cells through targeting Sox9.
Collapse
Affiliation(s)
- Jia Bao Gao
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Ming Nan Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiao Liang Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
20
|
Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells 2019; 8:cells8101214. [PMID: 31597272 PMCID: PMC6829616 DOI: 10.3390/cells8101214] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a sporadic disease with genetic and epigenetic components. Genomic instability in breast cancer leads to mutations, copy number variations, and genetic rearrangements, while epigenetic remodeling involves alteration by DNA methylation, histone modification and microRNAs (miRNAs) of gene expression profiles. The accrued scientific findings strongly suggest epigenetic dysregulation in breast cancer pathogenesis though genomic instability is central to breast cancer hallmarks. Being reversible and plastic, epigenetic processes appear more amenable toward therapeutic intervention than the more unidirectional genetic alterations. In this review, we discuss the epigenetic reprogramming associated with breast cancer such as shuffling of DNA methylation, histone acetylation, histone methylation, and miRNAs expression profiles. As part of this, we illustrate how epigenetic instability orchestrates the attainment of cancer hallmarks which stimulate the neoplastic transformation-tumorigenesis-malignancy cascades. As reversibility of epigenetic controls is a promising feature to optimize for devising novel therapeutic approaches, we also focus on the strategies for restoring the epistate that favor improved disease outcome and therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|