1
|
Kauv P, Chalah MA, Créange A, Lefaucheur JP, Hodel J, Ayache SS. The corticospinal tract in multiple sclerosis: correlation between cortical excitability and magnetic resonance imaging measures. J Neural Transm (Vienna) 2025; 132:265-273. [PMID: 39417879 PMCID: PMC11785694 DOI: 10.1007/s00702-024-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Multiple sclerosis (MS) is a central nervous system disease involving gray and white matters. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) could help identify potential markers of disease evolution, disability, and treatment response. This work evaluates the relationship between intracortical inhibition and facilitation, motor cortex lesions, and corticospinal tract (CST) integrity. Consecutive adult patients with progressive MS were included. Sociodemographic and clinical data were collected. MRI was acquired to assess primary motor cortex lesions (double inversion and phase-sensitive inversion recovery) and CST integrity (diffusion tensor imaging). TMS outcomes were obtained: motor evoked potentials (MEP) latency, resting motor threshold, short-interval intracortical facilitation (ICF) and inhibition. Correlation analysis was performed. Twenty-five patients completed the study (13 females, age: 55.60 ± 11.49 years, Expanded Disability Status Score: 6.00 ± 1.25). Inverse correlations were found between ICF mean and each of CST radial diffusivity (RD) (ρ =-0.56; p < 0.01), CST apparent diffusion coefficient (ADC) (ρ=-0.44; p = 0.03), and disease duration (ρ=-0.46; p = 0.02). MEP latencies were directly correlated with disability scores (ρ = 0.55; p < 0.01). High ADC/RD and low ICF have been previously reported in patients with MS. While the former could reflect structural damage of the CST, the latter could hint towards an aberrant synaptic transmission as well as a depletion of facilitatory compensatory mechanisms that helps overcoming functional decline. The findings suggest concomitant structural and functional abnormalities at later disease stages that would be accompanied with a heightened disability. The results should be interpreted with caution mainly because of the small sample size that precludes further comparisons (e.g., treated vs. untreated patients, primary vs. secondary progressive MS). The role of these outcomes as potential MS biomarkers merit to be further explored.
Collapse
Affiliation(s)
- Paul Kauv
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France.
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Institut de Neuromodulation, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Neurologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jérôme Hodel
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Centre d'Imagerie Médicale Léonard de Vinci, Paris, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
2
|
Chaves AR, Tremblay S, Pilutti L, Ploughman M. Lowered ratio of corticospinal excitation to inhibition predicts greater disability, poorer motor and cognitive function in multiple sclerosis. Heliyon 2024; 10:e35834. [PMID: 39170378 PMCID: PMC11337054 DOI: 10.1016/j.heliyon.2024.e35834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Investigate excitatory-inhibitory (E/I) (im)balance using transcranial magnetic stimulation (TMS) in individuals with Multiple Sclerosis (MS) and determine its validity as a neurophysiological biomarker of disability. Methods Participants with MS (n = 83) underwent TMS, cognitive, and motor function assessments. TMS-induced motor evoked potential amplitudes (excitability) and cortical silent periods (inhibition) were assessed bilaterally through recruitment curves. The E/I ratio was calculated as the ratio of excitation to inhibition. Results Participants with greater disability (Expanded Disability Status Scale, EDSS≥3) exhibited lower excitability and increased inhibition compared to those with lower disability (EDSS<3). This resulted in lower E/I ratios in the higher disability group. Individuals with higher disability presented with asymmetrical E/I ratios between brain hemispheres, a pattern not present in the group with lower disability. In regression analyses controlling for demographics, lowered TMS-probed E/I ratio predicted variance in disability (R2 = 0.37, p < 0.001), upper extremity function (R2 = 0.35, p < 0.001), walking speed (R2 = 0.22, p = 0.005), and cognitive performance (R2 = 0.25, p = 0.007). Receiver Operating Characteristic curve analysis confirmed 'excellent' discriminative ability of the E/I ratio in distinguishing high and low disability. Finally, excitation superiorly correlated with the E/I ratio than overall inhibition in both hemispheres (p ≤ 0.01). Conclusion The E/I ratio is a potential neurophysiological biomarker of disability level in MS, especially when assessed in the hemisphere corresponding to the weaker body side. Interventions aimed at increasing cortical excitation or reducing inhibition may restore E/I balance potentially stalling progression or improving function in MS.
Collapse
Affiliation(s)
- Arthur R. Chaves
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
| | - Sara Tremblay
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
- Faculty of Social Sciences, School of Psychology, University of Ottawa, ON, Canada
- Department of Molecular and Cellular Medicine, University of Ottawa, ON, Canada
| | - Lara Pilutti
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
| | | |
Collapse
|
3
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
4
|
Zhou X, Li K, Chen S, Zhou W, Li J, Huang Q, Xu T, Gao Z, Wang D, Zhao S, Dong H. Clinical application of transcranial magnetic stimulation in multiple sclerosis. Front Immunol 2022; 13:902658. [PMID: 36131925 PMCID: PMC9483183 DOI: 10.3389/fimmu.2022.902658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a common chronic, autoimmune-mediated inflammatory and neurodegenerative disease of the central nervous system. The treatment of MS has enormous progress with disease-modifying drugs, but the complexity of the disease course and the clinical symptoms of MS requires personalized treatment and disease management, including non-pharmacological treatment. Transcranial magnetic stimulation (TMS) is a painless and non-invasive brain stimulation technique, which has been widely used in neurological diseases. In this review, we mainly focus on the progress of physiological assessment and treatment of TMS in MS.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kailin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhiyuan Gao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuo Zhao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Dong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Stampanoni Bassi M, Iezzi E, Centonze D. Multiple sclerosis: Inflammation, autoimmunity and plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:457-470. [PMID: 35034754 DOI: 10.1016/b978-0-12-819410-2.00024-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, experimental studies have clarified that immune system influences the functioning of the central nervous system (CNS) in both physiologic and pathologic conditions. The neuro-immune crosstalk plays a crucial role in neuronal development and may be critically involved in mediating CNS response to neuronal damage. Multiple sclerosis (MS) represents a good model to investigate how the immune system regulates neuronal activity. Accordingly, a growing body of evidence has demonstrated that increased levels of pro-inflammatory mediators may significantly impact synaptic mechanisms, influencing overall neuronal excitability and synaptic plasticity expression. In this chapter, we provide an overview of preclinical data and clinical studies exploring synaptic functioning noninvasively with transcranial magnetic stimulation (TMS) in patients with MS. Moreover, we examine how inflammation-driven synaptic dysfunction could affect synaptic plasticity expression, negatively influencing the MS course. Contrasting CSF inflammation together with pharmacologic enhancement of synaptic plasticity and application of noninvasive brain stimulation, alone or in combination with rehabilitative treatments, could improve the clinical compensation and prevent the accumulating deterioration in MS.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| |
Collapse
|
6
|
Non-invasive brain stimulation to assess neurophysiologic underpinnings of lower limb motor impairment in multiple sclerosis. J Neurosci Methods 2021; 356:109143. [PMID: 33757762 DOI: 10.1016/j.jneumeth.2021.109143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory disease resulting in axonal demyelination and an amalgamation of symptoms which commonly result in decreased quality of life due to mobility dysfunction and limited participation in meaningful activities. NEW METHOD The use of non-invasive brain stimulation (NIBS) techniques, specifically transcranial magnetic and transcranial direct current stimulation, have been essential in understanding the pathophysiological decrements related to disease progression, particularly with regard to motor impairments. Although the research in this area has primarily focused on the upper extremities, new interest has arisen in understanding the neurophysiological underpinnings of lower limb impairment. Therefore, the purpose of this review is to: first, provide an overview of common NIBS techniques used to explore sensorimotor neurophysiology; second, summarize lower limb neuromuscular and mobility impairments typically observed in PwMS; third, review the current knowledge regarding interactions between TMS-assessed neurophysiology and lower limb impairments in PwMS; and fourth, provide recommendations for future NIBS studies based on current gaps in the literature. RESULTS PwMS exhibit reduced excitability and increased inhibitory neurophysiologic function which has been related to disease severity and lower limb motor impairments. Comparison with existing methods: Moreover, promising results indicate that the use of repetitive stimulation and transcranial direct current stimulation may prime neural adaptability and prove useful as a therapeutic tool in ameliorating lower limb impairments. CONCLUSIONS While these studies are both informative and promising, additional studies are necessary to be conclusive. As such, studies assessing objective measures of lower limb impairments associated with neurophysiological adaptations need further evaluation.
Collapse
|
7
|
Fatih P, Kucuker MU, Vande Voort JL, Doruk Camsari D, Farzan F, Croarkin PE. A Systematic Review of Long-Interval Intracortical Inhibition as a Biomarker in Neuropsychiatric Disorders. Front Psychiatry 2021; 12:678088. [PMID: 34149483 PMCID: PMC8206493 DOI: 10.3389/fpsyt.2021.678088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Long-interval intracortical inhibition (LICI) is a paired-pulse transcranial magnetic stimulation (TMS) paradigm mediated in part by gamma-aminobutyric acid receptor B (GABAB) inhibition. Prior work has examined LICI as a putative biomarker in an array of neuropsychiatric disorders. This review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) sought to examine existing literature focused on LICI as a biomarker in neuropsychiatric disorders. There were 113 articles that met the inclusion criteria. Existing literature suggests that LICI may have utility as a biomarker of GABAB functioning but more research with increased methodologic rigor is needed. The extant LICI literature has heterogenous methodology and inconsistencies in findings. Existing findings to date are also non-specific to disease. Future research should carefully consider existing methodological weaknesses and implement high-quality test-retest reliability studies.
Collapse
Affiliation(s)
- Parmis Fatih
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - M Utku Kucuker
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Jennifer L Vande Voort
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Centre for Engineering-Led Brain Research, Simon Fraser University, Surrey, BC, Canada
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Mohy AB, Hatem AK, Kadoori HG, Hamdan FB. Motor disability in patients with multiple sclerosis: transcranial magnetic stimulation study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS.
Objectives
The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability.
Patients and methods
Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated.
Results
TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not.
Conclusion
TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.
Collapse
|
9
|
Qasem H, Fujiyama H, Rurak BK, Vallence AM. Good test–retest reliability of a paired-pulse transcranial magnetic stimulation protocol to measure short-interval intracortical facilitation. Exp Brain Res 2020; 238:2711-2723. [DOI: 10.1007/s00221-020-05926-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
|
10
|
Abstract
I-waves represent high-frequency (~ 600 Hz) repetitive discharge of corticospinal fibers elicited by single-pulse stimulation of motor cortex. First detected and examined in animal preparations, this multiple discharge can also be recorded in humans from the corticospinal tract with epidural spinal electrodes. The exact underpinning neurophysiology of I-waves is still unclear, but there is converging evidence that they originate at the cortical level through synaptic input from specific excitatory interneuronal circuitries onto corticomotoneuronal cells, controlled by GABAAergic interneurons. In contrast, there is at present no supportive evidence for the alternative hypothesis that I-waves are generated by high-frequency oscillations of the membrane potential of corticomotoneuronal cells upon initial strong depolarization. Understanding I-wave physiology is essential for understanding how TMS activates the motor cortex.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
12
|
Stampanoni Bassi M, Buttari F, Gilio L, De Paolis N, Fresegna D, Centonze D, Iezzi E. Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Front Neurol 2020; 11:566. [PMID: 32733354 PMCID: PMC7358546 DOI: 10.3389/fneur.2020.00566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS) to assess the integrity of the corticospinal tract and the corpus callosum and to explore some physiological properties of the motor cortex. Specific alterations of TMS measures have been strongly associated to different pathophysiological mechanisms, particularly to demyelination and neuronal loss. Moreover, TMS has contributed to investigate the neurophysiological basis of MS symptoms, particularly those not completely explained by conventional structural damage, such as fatigue. However, variability existing between studies suggests that alternative mechanisms should be involved. Knowledge of MS pathophysiology has been enriched by experimental studies in animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that inflammation alters synaptic transmission, promoting hyperexcitability and neuronal damage. Accordingly, TMS studies have demonstrated an imbalance between cortical excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different proinflammatory and anti-inflammatory molecules have been associated to corticospinal hyperexcitability, highlighting that inflammatory synaptopathy may represent a key pathophysiological mechanism in MS. In this perspective article, we discuss whether corticospinal excitability alterations assessed with TMS in MS patients could be useful to explain the pathophysiological correlates and their relationships with specific MS clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that, in MS patients, inflammatory synaptopathy could be present since the early phases, could specifically characterize relapses, and could progressively increase during the disease course.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Nicla De Paolis
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Ferrazzano G, Crisafulli SG, Baione V, Tartaglia M, Cortese A, Frontoni M, Altieri M, Pauri F, Millefiorini E, Conte A. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J Neurol 2020; 268:3626-3645. [PMID: 32504180 DOI: 10.1007/s00415-020-09964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Most patients with multiple sclerosis presenting with a relapsing-remitting disease course at diagnosis transition to secondary progressive multiple sclerosis (SPMS) 1-2 decades after onset. SPMS is characterized by predominant neurodegeneration and atrophy. These pathogenic hallmarks result in unsatisfactory treatment response in SPMS patients. Therefore, early diagnosis of SPMS is necessary for prompt treatment decisions. The aim of this review was to assess neurophysiological and fluid biomarkers that have the potential to monitor disease progression and support early SPMS diagnosis. METHODS We performed a systematic review of studies that analyzed the role of neurophysiological techniques and fluid biomarkers in supporting SPMS diagnosis using the preferred reporting items for systematic reviews and meta-analyses statement. RESULTS From our initial search, we selected 24 relevant articles on neurophysiological biomarkers and 55 articles on fluid biomarkers. CONCLUSION To date, no neurophysiological or fluid biomarker is sufficiently validated to support the early diagnosis of SPMS. Neurophysiological measurements, including short interval intracortical inhibition and somatosensory temporal discrimination threshold, and the neurofilament light chain fluid biomarker seem to be the most promising. Cross-sectional studies on an adequate number of patients followed by longitudinal studies are needed to confirm the diagnostic and prognostic value of these biomarkers. A combination of neurophysiological and fluid biomarkers may be more sensitive in detecting SPMS conversion.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, San Filippo Neri Hospital, Rome, Italy
| | - Marco Frontoni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Flavia Pauri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
14
|
Calabrò RS, Russo M, Naro A, Ciurleo R, D'Aleo G, Rifici C, Balletta T, La Via C, Destro M, Bramanti P, Sessa E. Nabiximols plus robotic assisted gait training in improving motor performances in people with Multiple Sclerosis. Mult Scler Relat Disord 2020; 43:102177. [PMID: 32447249 DOI: 10.1016/j.msard.2020.102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/03/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, affecting ambulation even in people with only mild neurological signs. Patients with MS frequently experience spasticity, which contributes significantly to impair their motor functions, including ambulation, owing to muscle stiffness, spasms, and pain. OBJECTIVES To clarify the role of delta-9-tetrahydrocannabinol(THC):cannabidiol(CBD) oromucosal spray, coupled to robot-aided gait training (RAGT) using the Lokomat©Pro to improve functional ambulation in patients with MS. METHODS We compared 20 patients with MS, who were treated with THC:CBD oromucosal spray in add-on to the ongoing oral antispastic therapy (OAT) (group A), with 20 individuals with MS (matched for clinical-demographic characteristics) who were treated only with OAT (group B). Both the groups underwent RAGT using the Lokomat-Pro (three 45-minute sessions per week). Our primary outcome measures were the Functional Independence Measure (FIM) and the 10 meters walking test (10MWT). As secondary outcome measures we evaluated the brain cortical excitability by using Transcranial Magnetic Stimulation. Both parameters were taken before and after the end of the RAGT. RESULTS FIM improved in group A more than in group B (p<0.001). Moreover, 10MWT decreased in group A more than in group B (p<0.001). These clinical findings were paralleled by a more evident reshape of intracortical excitability in both upper and lower limbs, as suggested by motor evoked potential amplitude increase (p<0.001), intracortical inhibition strengthening (p<0.001), and intracortical facilitation decrease (p=0.01) in group A as compared to group B. CONCLUSIONS Our results suggest that the combined THC:CBD-RAGT approach could be useful in improving gait performance in patients with MS.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy.
| | - Margherita Russo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Rossella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Giangaetano D'Aleo
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Cristian La Via
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Massimo Destro
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| | - Edoardo Sessa
- IRCCS Centro Neurolesi Bonino Pulejo, Via Palermo, SS 113, Ctr. Casazza; 98124, Messina, Italy
| |
Collapse
|
15
|
Ruiu E, Dubbioso R, Madsen KH, Svolgaard O, Raffin E, Andersen KW, Karabanov AN, Siebner HR. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2020; 11:193. [PMID: 32431655 PMCID: PMC7214689 DOI: 10.3389/fneur.2020.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Methods: Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1. We traced context-dependent changes of corticospinal excitability and premotor–motor connectivity by measuring Motor-Evoked Potentials (MEPs) in the right first dorsal interosseus muscle. Central fatigue was evaluated with the Fatigue Scale for Motor and Cognitive Functions (FSMS). Results: In both groups, single-pulse TMS revealed a consistent increase in mean MEP amplitude during the Reaction Time (RT) period relative to a resting condition. Task-related corticospinal facilitation increased toward the end of the RT period in Pinch trials, while it decreased in No-Pinch trials. Again, this modulation of MEP facilitation by trial type was comparable in patients and controls. Dual-site TMS showed no significant effect of a conditioning PMd pulse on ipsilateral corticospinal excitability during the RT period in either group. However, patients showed a trend toward a relative attenuation in functional PMd-M1 connectivity at the end of the RT period in No-Pinch trials, which correlated positively with the severity of motor fatigue (r = 0.69; p = 0.007). Conclusions: Dynamic regulation of corticospinal excitability and ipsilateral PMd-M1 connectivity is preserved in patients with RR-MS. MS-related fatigue scales positively with an attenuation of premotor-to-motor functional connectivity during cued motor inhibition. Significance: The temporal, context-dependent modulation of ipsilateral premotor-motor connectivity, as revealed by dual-site TMS of ipsilateral PMd and M1, constitutes a promising neurophysiological marker of fatigue in MS.
Collapse
Affiliation(s)
- Elisa Ruiu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, University Hospital of Sassari, Sassari, Italy
| | - Raffaele Dubbioso
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Olivia Svolgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Brain Mind Institute and Centre of Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Radetz A, Fleischer V, Groppa S. Dissecting task-specific plasticity capacity in patients with multiple sclerosis with transcranial magnetic stimulation. Clin Neurophysiol 2019; 131:472-473. [PMID: 31866340 DOI: 10.1016/j.clinph.2019.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Angela Radetz
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Vinzenz Fleischer
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Sergiu Groppa
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| |
Collapse
|
17
|
Leocani L, Chieffo R, Gentile A, Centonze D. Beyond rehabilitation in MS: Insights from non-invasive brain stimulation. Mult Scler 2019; 25:1363-1371. [PMID: 31469356 DOI: 10.1177/1352458519865734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the number of disease-modifying treatments for people with multiple sclerosis (pwMS) has meaningfully increased in the past years, targeting repair or compensation for central nervous system damage associated with the disease process remains an important clinical goal. With this aim, neurorehabilitation is a powerful approach targeting central nervous system plasticity. Another driver of brain plasticity is non-invasive brain stimulation (NIBS), receiving recent attention in neurology, particularly for its potential synergy with neurorehabilitation and as add-on treatment for several neurological conditions, from pain to fatigue to sensorimotor and cognitive deficits. In this review, we will resume the evidence exploring the neurobiological basis of NIBS and its applications to MS-related conditions.
Collapse
Affiliation(s)
- Letizia Leocani
- Neurorehabilitation Unit and INSPE-Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Chieffo
- Neurorehabilitation Unit and INSPE-Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Nicoletti CG, Monteleone F, Marfia GA, Usiello A, Buttari F, Centonze D, Mori F. Oral D-Aspartate enhances synaptic plasticity reserve in progressive multiple sclerosis. Mult Scler 2019; 26:304-311. [DOI: 10.1177/1352458519828294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Synaptic plasticity reserve correlates with clinical recovery after a relapse in relapsing–remitting forms of multiple sclerosis (MS) and is significantly compromised in patients with progressive forms of MS. These findings suggest that progression of disability in MS is linked to reduced synaptic plasticity reserve. D-Aspartate, an endogenous aminoacid approved for the use in humans as a dietary supplement, enhances synaptic plasticity in mice. Objective: To test whether D-Aspartate oral intake increases synaptic plasticity reserve in progressive MS patients. Methods: A total of 31 patients affected by a progressive form of MS received either single oral daily doses of D-Aspartate 2660 mg or placebo for 4 weeks. Synaptic plasticity reserve and trans-synaptic cortical excitability were measured through transcranial magnetic stimulation (TMS) protocols before and after D-Aspartate. Results: Both TMS-induced long-term potentiation (LTP), intracortical facilitation (ICF) and short-interval ICF increased after 2 and 4 weeks of D-Aspartate but not after placebo, suggesting an enhancement of synaptic plasticity reserve and increased trans-synaptic glutamatergic transmission. Conclusion: Daily oral D-Aspartate 2660 mg for 4 weeks enhances synaptic plasticity reserve in patients with progressive MS, opening the path to further studies assessing its clinical effects on disability progression.
Collapse
Affiliation(s)
- Carolina G Nicoletti
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizia Monteleone
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, The Second University of Naples, Caserta, Italy/ Laboratory of Behavioral Neuroscience, CEINGE —Biotecnologie Avanzate, Naples, Italy
| | | | - Diego Centonze
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/ Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Mori
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/ Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
19
|
Chaves AR, Wallack EM, Kelly LP, Pretty RW, Wiseman HD, Chen A, Moore CS, Stefanelli M, Ploughman M. Asymmetry of Brain Excitability: A New Biomarker that Predicts Objective and Subjective Symptoms in Multiple Sclerosis. Behav Brain Res 2019; 359:281-291. [DOI: 10.1016/j.bbr.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
|
20
|
Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D, Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 2017; 128:1148-1157. [DOI: 10.1016/j.clinph.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/16/2023]
|
21
|
Neva JL, Brown KE, Mang CS, Francisco BA, Boyd LA. An acute bout of exercise modulates both intracortical and interhemispheric excitability. Eur J Neurosci 2017; 45:1343-1355. [PMID: 28370664 DOI: 10.1111/ejn.13569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
Primary motor cortex (M1) excitability is modulated following a single session of cycling exercise. Specifically, short-interval intracortical inhibition and intracortical facilitation are altered following a session of cycling, suggesting that exercise affects the excitability of varied cortical circuits. Yet we do not know whether a session of exercise also impacts the excitability of interhemispheric circuits between, and other intracortical circuits within, M1. Here we present two experiments designed to address this gap in knowledge. In experiment 1, single and paired pulse transcranial magnetic stimulation (TMS) were used to measure intracortical circuits including, short-interval intracortical facilitation (SICF) tested at 1.1, 1.5, 2.7, 3.1 and 4.5 ms interstimulus intervals (ISIs), contralateral silent period (CSP) and interhemispheric interactions by measuring transcallosal inhibition (TCI) recorded from the abductor pollicus brevis muscles. All circuits were assessed bilaterally pre and two time points post (immediately, 30 min) moderate intensity lower limb cycling. SICF was enhanced in the left hemisphere after exercise at the 1.5 ms ISI. Also, CSP was shortened and TCI decreased bilaterally after exercise. In Experiment 2, corticospinal and spinal excitability were tested before and after exercise to investigate the locus of the effects found in Experiment 1. Exercise did not impact motor-evoked potential recruitment curves, Hoffman reflex or V-wave amplitudes. These results suggest that a session of exercise decreases intracortical and interhemispheric inhibition and increases facilitation in multiple circuits within M1, without concurrently altering spinal excitability. These findings have implications for developing exercise strategies designed to potentiate M1 plasticity and skill learning in healthy and clinical populations.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - B A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
22
|
Ayache SS, Créange A, Farhat WH, Zouari HG, Lesage C, Palm U, Abdellaoui M, Lefaucheur JP. Cortical excitability changes over time in progressive multiple sclerosis. FUNCTIONAL NEUROLOGY 2016; 30:257-63. [PMID: 26727704 DOI: 10.11138/fneur/2015.30.4.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In 25 patients with progressive forms of multiple sclerosis (MS), motor cortex excitability was longitudinally studied over one year by means of transcranial magnetic stimulation (TMS). The following TMS parameters were considered: resting and active motor thresholds (MTs), input-output curve, short-interval intracortical inhibition (SICI), and intracortical facilitation. Clinical evaluation was based on the Expanded Disability Status Scale (EDSS). In the 16 patients not receiving disease-modifying drugs, the EDSS score worsened, resting MT increased, and SICI decreased. By contrast, no clinical for neurophysiological changes were found over time in the nine patients receiving immunomodulatory therapy. The natural course of progressive MS appears to be associated with a decline in cortical excitability of both pyramidal neurons and inhibitory circuits. This pilot study based on a small sample suggests that disease-modifying drugs may allow cortical excitability to remain stable, even in patients with progressive MS.
Collapse
|
23
|
Squintani G, Donato F, Turri M, Deotto L, Teatini F, Moretto G, Erro R. Cortical and spinal excitability in patients with multiple sclerosis and spasticity after oromucosal cannabinoid spray. J Neurol Sci 2016; 370:263-268. [PMID: 27772772 DOI: 10.1016/j.jns.2016.09.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex®) has been recently approved for the management of treatment-resistant multiple sclerosis (MS) spasticity. Although the symptomatic relief of Sativex® on MS-spasticity has been consistently demonstrated, the pathogenetic implications remain unclear and the few electrophysiological studies performed to address this topic yielded controversial results. We therefore aimed to investigate the mechanisms underpinning the modulation of spastic hypertonia by Sativex®, at both central and spinal levels, through an extensive neurophysiological battery in patients with MS. METHODS Nineteen MS patients with treatment-resistant spasticity were recruited. Before and after 4weeks of treatment with Sativex® patients were clinically assessed with the Modified Ashworth Scale (MAS) and underwent a large neurophysiological protocol targeting measures of excitability and inhibition at both cortical [e.g., intracortical facilitation (ICF), short (SICI) and long (LICI) intracortical inhibition, cortical silent period (CSP)] and spinal level [e.g., H-reflex, H/M ratio and recovery curve of the H-reflex (HRC)]. A group of 19 healthy subjects served as controls. RESULTS A significant reduction of the MAS score after 4weeks of Sativex® treatment was detected. Before treatment, an increase in the late facilitatory phase of HRC was recorded in patients compared to the control group, that normalised post treatment. At central level, SICI and LICI were significantly higher in patients compared to healthy subjects. After therapy, a significant strengthening of inhibition (e.g. reduced LICI) and a non-significant facilitation (e.g. marginally increased ICF) occurred, suggesting a modulatory effect of Sativex® on different pathways, predominantly of inhibitory type. Sativex® treatment was well tolerated, with only 3 patients complaining about dizziness and bitter taste in their mouth. DISCUSSION Our results confirm the clinical benefit of Sativex® on spastic hypertonia and demonstrate that it might modulate both cortical and spinal circuits, arguably in terms of both excitation and inhibition. We suggest that the clinical benefit was likely related to a net increase of inhibition at cortical level that, in turn, might have influenced spinal excitability.
Collapse
Affiliation(s)
- Giovanna Squintani
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Francesco Donato
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Mara Turri
- Neurology Unit, Ospedale Centrale di Bolzano, Italy
| | - Luciano Deotto
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Giuseppe Moretto
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Erro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Nantes JC, Zhong J, Holmes SA, Narayanan S, Lapierre Y, Koski L. Cortical Damage and Disability in Multiple Sclerosis: Relation to Intracortical Inhibition and Facilitation. Brain Stimul 2016; 9:566-73. [DOI: 10.1016/j.brs.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022] Open
|
25
|
Neva JL, Lakhani B, Brown KE, Wadden KP, Mang CS, Ledwell NHM, Borich MR, Vavasour IM, Laule C, Traboulsee AL, MacKay AL, Boyd LA. Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behav Brain Res 2016; 297:187-95. [PMID: 26467603 PMCID: PMC4904787 DOI: 10.1016/j.bbr.2015.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
In individuals with multiple sclerosis (MS), transcranial magnetic stimulation (TMS) may be employed to assess the integrity of corticospinal system and provides a potential surrogate biomarker of disability. The purpose of this study was to provide a comprehensive examination of the relationship between multiple measures corticospinal excitability and clinical disability in MS (expanded disability status scale (EDSS)). Bilateral corticospinal excitability was assessed using motor evoked potential (MEP) input-output (IO) curves, cortical silent period (CSP), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and transcallosal inhibition (TCI) in 26 individuals with MS and 11 healthy controls. Measures of corticospinal excitability were compared between individuals with MS and controls. We evaluated the relationship(s) between age and clinical demographics such as age at MS onset (AO), disease duration (DD) and clinical disability (EDSS) with measures of corticospinal excitability. Corticospinal excitability thresholds were higher, MEP latency and CSP onset delayed and MEP durations prolonged in individuals with MS compared to controls. Age, DD and EDSS correlated with corticospinal excitability thresholds. Also, TCI duration and the linear slope of the MEP amplitude IO curve correlated with EDSS. Hierarchical regression modeling demonstrated that combining multiple TMS-based measures of corticospinal excitability accounted for unique variance in clinical disability (EDSS) beyond that of clinical demographics (AO, DD). Our results indicate that multiple TMS-based measures of corticospinal and interhemispheric excitability provide insights into the potential neural mechanisms associated with clinical disability in MS. These findings may aid in the clinical evaluation, disease monitoring and prediction of disability in MS.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - B Lakhani
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K P Wadden
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - N H M Ledwell
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - M R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - I M Vavasour
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| | - C Laule
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L Traboulsee
- Division of Neurology, Department of Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L MacKay
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
27
|
Houdayer E, Comi G, Leocani L. The Neurophysiologist Perspective into MS Plasticity. Front Neurol 2015; 6:193. [PMID: 26388835 PMCID: PMC4558527 DOI: 10.3389/fneur.2015.00193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms, which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological tools, such as electroencephalography (EEG) and related techniques (evoked potentials) or transcranial magnetic stimulation (TMS). These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed, the recent development of non-invasive brain stimulation techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation, has brought promising results as add-on treatments. In this review, we will focus on the use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques used to modulate plasticity in MS.
Collapse
Affiliation(s)
- Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
28
|
Simpson M, Macdonell R. The use of transcranial magnetic stimulation in diagnosis, prognostication and treatment evaluation in multiple sclerosis. Mult Scler Relat Disord 2015; 4:430-436. [PMID: 26346791 DOI: 10.1016/j.msard.2015.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Despite advances in brain imaging which have revolutionised the diagnosis and monitoring of patients with Multiple Sclerosis (MS), current imaging techniques have limitations, including poor correlation with clinical disability and prognosis. There is growing evidence that electrophysiological techniques may provide complementary functional information which can aid in diagnosis, prognostication and perhaps even monitoring of treatment response in patients with MS. Transcranial magnetic stimulation (TMS) is an underutilised technique with potential to assist diagnosis, predict prognosis and provide an objective surrogate marker of clinical progress and treatment response. This review explores the existing body of evidence relating to the use of TMS in patients with MS, outlines the practical aspects and scope of TMS testing and reviews the current evidence relating to the use of TMS in diagnosis, disease classification, prognostication and response to symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Marion Simpson
- Department of Neurology, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, Vic, Australia.
| | - Richard Macdonell
- Department of Neurology, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
29
|
Sativex in the management of multiple sclerosis-related spasticity: role of the corticospinal modulation. Neural Plast 2015; 2015:656582. [PMID: 25699191 PMCID: PMC4325203 DOI: 10.1155/2015/656582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 02/08/2023] Open
Abstract
Sativex is an emergent treatment option for spasticity in patients affected by multiple sclerosis (MS). This oromucosal spray, acting as a partial agonist at cannabinoid receptors, may modulate the balance between excitatory and inhibitory neurotransmitters, leading to muscle relaxation that is in turn responsible for spasticity improvement. Nevertheless, since the clinical assessment may not be sensitive enough to detect spasticity changes, other more objective tools should be tested to better define the real drug effect. The aim of our study was to investigate the role of Sativex in improving spasticity and related symptomatology in MS patients by means of an extensive neurophysiological assessment of sensory-motor circuits. To this end, 30 MS patients underwent a complete clinical and neurophysiological examination, including the following electrophysiological parameters: motor threshold, motor evoked potentials amplitude, intracortical excitability, sensory-motor integration, and Hmax/Mmax ratio. The same assessment was applied before and after one month of continuous treatment. Our data showed an increase of intracortical inhibition, a significant reduction of spinal excitability, and an improvement in spasticity and associated symptoms. Thus, we can speculate that Sativex could be effective in reducing spasticity by means of a double effect on intracortical and spinal excitability.
Collapse
|
30
|
Brown KE, Neva JL, Ledwell NM, Boyd LA. Use of transcranial magnetic stimulation in the treatment of selected movement disorders. Degener Neurol Neuromuscul Dis 2014; 4:133-151. [PMID: 32669907 PMCID: PMC7337234 DOI: 10.2147/dnnd.s70079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the underlying neurophysiology associated with various neuropathologies, and is a unique tool for establishing potential neural mechanisms responsible for disease progression. Recently, repetitive TMS (rTMS) has been advanced as a potential therapeutic technique to treat selected neurologic disorders. In healthy individuals, rTMS can induce changes in cortical excitability. Therefore, targeting specific cortical areas affected by movement disorders theoretically may alter symptomology. This review discusses the evidence for the efficacy of rTMS in Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. It is hoped that gaining a more thorough understanding of the timing and parameters of rTMS in individuals with neurodegenerative disorders may advance both clinical care and research into the most effective uses of this technology.
Collapse
Affiliation(s)
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A Boyd
- Graduate Program in Rehabilitation Science.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Ayache SS, Créange A, Farhat WH, Zouari HG, Mylius V, Ahdab R, Abdellaoui M, Lefaucheur JP. Relapses in multiple sclerosis: effects of high-dose steroids on cortical excitability. Eur J Neurol 2014; 21:630-6. [DOI: 10.1111/ene.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- S. S. Ayache
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
| | - A. Créange
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Neurologie; Hôpital Henri-Mondor; AP-HP; Créteil France
| | - W. H. Farhat
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
- Service de Neurologie; Hôpital Henri-Mondor; AP-HP; Créteil France
| | - H. G. Zouari
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
- CHU Habib Bourguiba; Service d'Explorations Fonctionnelles; Sfax Tunisie
| | - V. Mylius
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
- Department of Neurology; Philipps University Marburg; Marburg Germany
| | - R. Ahdab
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
- Neuroscience Department; University Medical Center Rizk Hospital; Beirut Lebanon
| | - M. Abdellaoui
- Service de Neurologie; Hôpital Henri-Mondor; AP-HP; Créteil France
| | - J.-P. Lefaucheur
- EA 4391; Faculté de Médecine de Créteil; Université Paris Est Créteil; Créteil France
- Service de Physiologie; Explorations Fonctionnelles; Hôpital Henri-Mondor; AP-HP; Créteil France
| |
Collapse
|
32
|
Delvendahl I, Lindemann H, Jung NH, Pechmann A, Siebner HR, Mall V. Influence of Waveform and Current Direction on Short-Interval Intracortical Facilitation: A Paired-Pulse TMS Study. Brain Stimul 2014; 7:49-58. [DOI: 10.1016/j.brs.2013.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/14/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022] Open
|
33
|
Margaritella N, Mendozzi L, Garegnani M, Nemni R, Colicino E, Gilardi E, Pugnetti L. Exploring the predictive value of the evoked potentials score in MS within an appropriate patient population: a hint for an early identification of benign MS? BMC Neurol 2012; 12:80. [PMID: 22913733 PMCID: PMC3488473 DOI: 10.1186/1471-2377-12-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/31/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prognostic value of evoked potentials (EPs) in multiple sclerosis (MS) has not been fully established. The correlations between the Expanded Disability Status Scale (EDSS) at First Neurological Evaluation (FNE) and the duration of the disease, as well as between EDSS and EPs, have influenced the outcome of most previous studies. To overcome this confounding relations, we propose to test the prognostic value of EPs within an appropriate patient population which should be based on patients with low EDSS at FNE and short disease duration. METHODS We retrospectively selected a sample of 143 early relapsing remitting MS (RRMS) patients with an EDSS < 3.5 from a larger database spanning 20 years. By means of bivariate logistic regressions, the best predictors of worsening were selected among several demographic and clinical variables. The best multivariate logistic model was statistically validated and prospectively applied to 50 patients examined during 2009-2011. RESULTS The Evoked Potentials score (EP score) and the Time to EDSS 2.0 (TT2) were the best predictors of worsening in our sample (Odds Ratio 1.10 and 0.82 respectively, p=0.001). Low EP score (below 15-20 points), short TT2 (lower than 3-5 years) and their interaction resulted to be the most useful for the identification of worsening patterns. Moreover, in patients with an EP score at FNE below 6 points and a TT2 greater than 3 years the probability of worsening was 10% after 4-5 years and rapidly decreased thereafter. CONCLUSIONS In an appropriate population of early RRMS patients, the EP score at FNE is a good predictor of disability at low values as well as in combination with a rapid buildup of disability. Interestingly, an EP score at FNE under the median together with a clinical stability lasting more than 3 years turned out to be a protective pattern. This finding may contribute to an early identification of benign patients, well before the term required to diagnose Benign MS (BMS).
Collapse
Affiliation(s)
- Nicolò Margaritella
- Laboratory of Clinical Neurophysiology, Scientific Institute (IRCCS) S, Maria Nascente, don C. Gnocchi Foundation, Via Capecelatro 66, Milan, 20148, Italy
| | | | | | | | | | | | | |
Collapse
|