1
|
Cabral-Calderin Y, van Hinsberg D, Thielscher A, Henry MJ. Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties. eLife 2024; 12:RP87820. [PMID: 38289225 PMCID: PMC10945705 DOI: 10.7554/elife.87820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Synchronization between auditory stimuli and brain rhythms is beneficial for perception. In principle, auditory perception could be improved by facilitating neural entrainment to sounds via brain stimulation. However, high inter-individual variability of brain stimulation effects questions the usefulness of this approach. Here we aimed to modulate auditory perception by modulating neural entrainment to frequency modulated (FM) sounds using transcranial alternating current stimulation (tACS). In addition, we evaluated the advantage of using tACS montages spatially optimized for each individual's anatomy and functional data compared to a standard montage applied to all participants. Across two different sessions, 2 Hz tACS was applied targeting auditory brain regions. Concurrent with tACS, participants listened to FM stimuli with modulation rate matching the tACS frequency but with different phase lags relative to the tACS, and detected silent gaps embedded in the FM sound. We observed that tACS modulated the strength of behavioral entrainment to the FM sound in a phase-lag specific manner. Both the optimal tACS lag and the magnitude of the tACS effect were variable across participants and sessions. Inter-individual variability of tACS effects was best explained by the strength of the inward electric field, depending on the field focality and proximity to the target brain region. Although additional evidence is necessary, our results also provided suggestive insights that spatially optimizing the electrode montage could be a promising tool to reduce inter-individual variability of tACS effects. This work demonstrates that tACS effectively modulates entrainment to sounds depending on the optimality of the electric field. However, the lack of reliability on optimal tACS lags calls for caution when planning tACS experiments based on separate sessions.
Collapse
Affiliation(s)
| | | | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of DenmarkCopenhagenDenmark
| | - Molly J Henry
- Max Planck Institute for Empirical AestheticsFrankfurtGermany
- Toronto Metropolitan UniversityTorontoCanada
| |
Collapse
|
2
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
3
|
Löffler BS, Stecher HI, Meiser A, Fudickar S, Hein A, Herrmann CS. Attempting to counteract vigilance decrement in older adults with brain stimulation. FRONTIERS IN NEUROERGONOMICS 2023; 4:1201702. [PMID: 38234473 PMCID: PMC10790873 DOI: 10.3389/fnrgo.2023.1201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS. Method We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION). Results Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected. Discussion Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.
Collapse
Affiliation(s)
- Birte S. Löffler
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Heiko I. Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Rufener KS, Zaehle T, Krauel K. Combined multi-session transcranial alternating current stimulation (tACS) and language skills training improves individual gamma band activity and literacy skills in developmental dyslexia. Dev Cogn Neurosci 2023; 64:101317. [PMID: 37898018 PMCID: PMC10630593 DOI: 10.1016/j.dcn.2023.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Developmental dyslexia is characterized by the pathologically diminished ability to acquire reading and spelling skills. Accurate processing of acoustic information at the phonemic scale is crucial for successful sound-to-letter-mapping which, in turn, is elemental in reading and spelling. Altered activation patterns in the auditory cortex are thought to provide the neurophysiological basis for the inaccurate phonemic perception. Recently, transcranial electrical stimulation has been shown to be an effective method to ameliorate cortical activation patterns in the auditory cortex. In a sample of children and adolescents with dyslexia, we investigated the effect of multi-session transcranial alternating current stimulation delivered concurrently with a phonological training and in combination with a behavioral literacy skills training. Over a 5-week period the participants received 10 training sessions while gamma-tACS was administered over bilateral auditory cortex. We found that gamma-tACS shifted the peak frequency of auditory gamma oscillations reflecting a more fine-grained processing of time-critical acoustic information. This amelioration was accompanied by increased phonemic processing skills. Moreover, individuals who received gamma-tACS showed significant improvements in their spelling skills four months after the intervention. Our results demonstrate that multi-session gamma-tACS enhances the effects of a behavioral intervention and induces long-term improvement on literacy skills in dyslexia.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany.
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| |
Collapse
|
5
|
Medeiros W, Barros T, Caixeta FV. Bibliometric mapping of non-invasive brain stimulation techniques (NIBS) for fluent speech production. Front Hum Neurosci 2023; 17:1164890. [PMID: 37425291 PMCID: PMC10323431 DOI: 10.3389/fnhum.2023.1164890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Language production is a finely regulated process, with many aspects which still elude comprehension. From a motor perspective, speech involves over a hundred different muscles functioning in coordination. As science and technology evolve, new approaches are used to study speech production and treat its disorders, and there is growing interest in the use of non-invasive modulation by means of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Methods Here we analyzed data obtained from Scopus (Elsevier) using VOSViewer to provide an overview of bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling of non-invasive brain stimulation (NIBS) use in speech research. Results In total, 253 documents were found, being 55% from only three countries (USA, Germany and Italy), with emerging economies such as Brazil and China becoming relevant in this topic recently. Most documents were published in this last decade, with 2022 being the most productive yet, showing brain stimulation has untapped potential for the speech research field. Discussion Keyword analysis indicates a move away from basic research on the motor control in healthy speech, toward clinical applications such as stuttering and aphasia treatment. We also observe a recent trend in cerebellar modulation for clinical treatment. Finally, we discuss how NIBS have established over the years and gained prominence as tools in speech therapy and research, and highlight potential methodological possibilities for future research.
Collapse
|
6
|
Li T, Chang Y, Zhao S, Jones JA, Chen X, Gan C, Wu X, Dai G, Li J, Shen Y, Liu P, Liu H. The left inferior frontal gyrus is causally linked to vocal feedback control: evidence from high-definition transcranial alternating current stimulation. Cereb Cortex 2022; 33:5625-5635. [PMID: 36376991 DOI: 10.1093/cercor/bhac447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Yichen Chang
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Shuzhi Zhao
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jeffery A Jones
- Wilfrid Laurier University Psychology Department and Laurier Centre for Cognitive Neuroscience, , Waterloo, Ontario N2L 3C5 , Canada
| | - Xi Chen
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Chu Gan
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Xiuqin Wu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Guangyan Dai
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jingting Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Ying Shen
- The First Affiliated Hospital of Nanjing Medical University Rehabilitation Medicine Center, , Nanjing 210029 , China
| | - Peng Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Hanjun Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
- Zhongshan School of Medicine, Sun Yat-sen University Guangdong Provincial Key Laboratory of Brain Function and Disease, , Guangzhou 510080 , China
| |
Collapse
|
7
|
Varastegan S, Kazemi R, Rostami R, Khomami S, Zandbagleh A, Hadipour AL. Remember NIBS? tACS improves memory performance in elders with subjective memory complaints. GeroScience 2022; 45:851-869. [PMID: 36272055 PMCID: PMC9886712 DOI: 10.1007/s11357-022-00677-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Subjective memory complaints (SMC), the main cognitive component of which is event memory, is a predictor of Alzheimer's disease in elderly people. The purpose of this trial was to investigate the effect of transcranial alternating current stimulation (tACS) with theta frequency (6 Hz) on the medial prefrontal cortex (mPFC) in the improvement of episodic memory in individuals with SMC in a double blind, randomized, and sham-controlled parallel study. Sixteen participants with SMC received either active or sham theta tACS on the mPFC. EEG was recorded, and Rey Auditory Verbal Learning Test (RAVLT) was administered. tACS resulted in a significant improvement in episodic memory performance as measured by RAVLT. EEG data revealed a decrease in theta power; decrease in theta, alpha, and gamma current source density (CSD) in the postcentral, insula, and cingulate gyrus; and decrease in theta and gamma phase synchronization as a result of active tACS, compared to the sham group. Moreover, a significant correlation between delayed recall score of RAVLT and CSD in left inferior gyrus in theta frequency band was observed. The results of the current study showed that theta tACS of the mPFC can improve event memory in individuals with SMC through modulating the activity in the frontal and temporal regions in the brain and thus can be considered a potential therapeutic intervention for this population.
Collapse
Affiliation(s)
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Blvd Cognitive Science, Pardis, Tehran, 1658344575, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Sanaz Khomami
- Department of Psychology, Faculty of Education and Psychology, Alzahra University, Tehran, Iran
| | - Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Abed L. Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Kurthen I, Christen A, Meyer M, Giroud N. Older adults' neural tracking of interrupted speech is a function of task difficulty. Neuroimage 2022; 262:119580. [PMID: 35995377 DOI: 10.1016/j.neuroimage.2022.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related hearing loss is a highly prevalent condition, which manifests at both the auditory periphery and the brain. It leads to degraded auditory input, which needs to be repaired in order to achieve understanding of spoken language. It is still unclear how older adults with this condition draw on their neural resources to optimally process speech. By presenting interrupted speech to 26 healthy older adults with normal-for-age audiograms, this study investigated neural tracking of degraded auditory input. The electroencephalograms of the participants were recorded while they first listened to and then verbally repeated sentences interrupted by silence in varying interruption rates. Speech tracking was measured by inter-trial phase coherence in response to the stimuli. In interruption rates that corresponded to the theta frequency band, speech tracking was highly specific to the interruption rate and positively related to the understanding of interrupted speech. These results suggest that older adults' brain activity optimizes through the tracking of stimulus characteristics, and that this tracking aids in processing an incomplete auditory stimulus. Further investigation of speech tracking as a candidate training mechanism to alleviate age-related hearing loss is thus encouraged.
Collapse
Affiliation(s)
- Ira Kurthen
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14/21, Zurich 8050, Switzerland.
| | - Allison Christen
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14/21, Zurich 8050, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland; Cognitive Psychology Unit, University of Klagenfurt, Austria
| | - Nathalie Giroud
- Department of Computational Linguistics, Phonetics and Speech Sciences, University of Zurich, Switzerland; Competence Center for Language & Medicine, University of Zurich, Switzerland; Center for Neuroscience Zurich, University of Zurich, Switzerland
| |
Collapse
|
9
|
10-Hz tACS over the prefrontal cortex improves phonemic fluency in healthy individuals. Sci Rep 2022; 12:8305. [PMID: 35585105 PMCID: PMC9117193 DOI: 10.1038/s41598-022-11961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Verbal fluency is an important indicator of human verbal ability. Methods to improve fluency is an interesting issue necessitating investigation. To do this, the current study required participants to randomly receive transcranial alternating current stimulation (tACS) at 10 Hz, 40 Hz (control frequency), and sham stimulation over the prefrontal cortex before a phonemic fluency task. It was found that 10-Hz tACS significantly improved phonemic fluency relative to sham stimulation. This result demonstrates the modulatory effect of 10-Hz tACS on language ability.
Collapse
|
10
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
13
|
Saito K, Otsuru N, Yokota H, Inukai Y, Miyaguchi S, Kojima S, Onishi H. α-tACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain Behav 2021; 11:e02019. [PMID: 33405361 PMCID: PMC7994706 DOI: 10.1002/brb3.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Spontaneous oscillations in the somatosensory cortex, especially of the alpha (8 - 14 Hz) and gamma (60 - 80 Hz) frequencies, affect tactile perception; moreover, these oscillations can be selectively modulated by frequency-matched transcranial alternating current stimulation (tACS) on the basis of ongoing oscillatory brain activity. To examine whether tACS can actually improve tactile perception via alpha and gamma modulation, we measured the effects of 10-Hz and 70-Hz tACS (α- and γ-tACS) on the left somatosensory cortex on right-finger tactile spatial orientation discrimination, and the associations between performance changes and individual alpha and gamma activities. METHODS Fifteen neurologically healthy subjects were recruited into this study. Electroencephalography (EEG) was performed before the first day, to assess the normal alpha- and gamma-activity levels. A grating orientation discrimination task was performed before and during 10-Hz and 70-Hz tACS. RESULTS The 10-Hz tACS protocol decreased the grating orientation discrimination threshold, primarily in subjects with low alpha event-related synchronization (ERS). In contrast, the 70-Hz tACS had no effect on the grating orientation discrimination threshold. CONCLUSIONS This study showed that 10-Hz tACS can improve tactile orientation discrimination in subjects with low alpha activity. Alpha-frequency tACS may help identify the contributions of these oscillations to other neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
14
|
Erkens J, Schulte M, Vormann M, Wilsch A, Herrmann CS. Hearing Impaired Participants Improve More Under Envelope-Transcranial Alternating Current Stimulation When Signal to Noise Ratio Is High. Neurosci Insights 2021; 16:2633105520988854. [PMID: 33709079 PMCID: PMC7907945 DOI: 10.1177/2633105520988854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
An issue commonly expressed by hearing aid users is a difficulty to understand speech in complex hearing scenarios, that is, when speech is presented together with background noise or in situations with multiple speakers. Conventional hearing aids are already designed with these issues in mind, using beamforming to only enhance sound from a specific direction, but these are limited in solving these issues as they can only modulate incoming sound at the cochlear level. However, evidence exists that age-related hearing loss might partially be caused later in the hearing processes due to brain processes slowing down and becoming less efficient. In this study, we tested whether it would be possible to improve the hearing process at the cortical level by improving neural tracking of speech. The speech envelopes of target sentences were transformed into an electrical signal and stimulated onto elderly participants' cortices using transcranial alternating current stimulation (tACS). We compared 2 different signal to noise ratios (SNRs) with 5 different delays between sound presentation and stimulation ranging from 50 ms to 150 ms, and the differences in effects between elderly normal hearing and elderly hearing impaired participants. When the task was performed at a high SNR, hearing impaired participants appeared to gain more from envelope-tACS compared to when the task was performed at a lower SNR. This was not the case for normal hearing participants. Furthermore, a post-hoc analysis of the different time-lags suggest that elderly were significantly better at a stimulation time-lag of 150 ms when the task was presented at a high SNR. In this paper, we outline why these effects are worth exploring further, and what they tell us about the optimal tACS time-lag.
Collapse
Affiliation(s)
- Jules Erkens
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
| | | | | | - Anna Wilsch
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
| | - Christoph S Herrmann
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
- Research Center Neurosensory Science,
Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
15
|
Preisig BC, Riecke L, Sjerps MJ, Kösem A, Kop BR, Bramson B, Hagoort P, Hervais-Adelman A. Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proc Natl Acad Sci U S A 2021; 118:e2015488118. [PMID: 33568530 PMCID: PMC7896308 DOI: 10.1073/pnas.2015488118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain connectivity plays a major role in the encoding, transfer, and integration of sensory information. Interregional synchronization of neural oscillations in the γ-frequency band has been suggested as a key mechanism underlying perceptual integration. In a recent study, we found evidence for this hypothesis showing that the modulation of interhemispheric oscillatory synchrony by means of bihemispheric high-density transcranial alternating current stimulation (HD-TACS) affects binaural integration of dichotic acoustic features. Here, we aimed to establish a direct link between oscillatory synchrony, effective brain connectivity, and binaural integration. We experimentally manipulated oscillatory synchrony (using bihemispheric γ-TACS with different interhemispheric phase lags) and assessed the effect on effective brain connectivity and binaural integration (as measured with functional MRI and a dichotic listening task, respectively). We found that TACS reduced intrahemispheric connectivity within the auditory cortices and antiphase (interhemispheric phase lag 180°) TACS modulated connectivity between the two auditory cortices. Importantly, the changes in intra- and interhemispheric connectivity induced by TACS were correlated with changes in perceptual integration. Our results indicate that γ-band synchronization between the two auditory cortices plays a functional role in binaural integration, supporting the proposed role of interregional oscillatory synchrony in perceptual integration.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands;
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Anne Kösem
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Lyon Neuroscience Research Center, Cognition Computation and Neurophysiology Team, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Benjamin R Kop
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Bob Bramson
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Rufener KS, Zaehle T. Dysfunctional auditory gamma oscillations in developmental dyslexia: A potential target for a tACS-based intervention. PROGRESS IN BRAIN RESEARCH 2021; 264:211-232. [PMID: 34167657 DOI: 10.1016/bs.pbr.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interventions in developmental dyslexia typically consist of orthography-based reading and writing trainings. However, their efficacy is limited and, consequently, the symptoms persist into adulthood. Critical for this lack of efficacy is the still ongoing debate about the core deficit in dyslexia and its underlying neurobiological causes. There is ample evidence on phonological as well as auditory temporal processing deficits in dyslexia and, on the other hand, cortical gamma oscillations in the auditory cortex as functionally relevant for the extraction of linguistically meaningful information units from the acoustic signal. The present work aims to shed more light on the link between auditory gamma oscillations, phonological awareness, and literacy skills in dyslexia. By mean of EEG, individual gamma frequencies were assessed in a group of children and adolescents diagnosed with dyslexia as well as in an age-matched control group with typical literacy skills. Furthermore, phonological awareness was assessed in both groups, while in dyslexic participants also reading and writing performance was measured. We found significantly lower gamma peak frequencies as well as lower phonological awareness scores in dyslexic participants compared to age-matched controls. Additionally, results showed a positive correlation between the individual gamma frequency and phonological awareness. Our data suggest a hierarchical structure of neural gamma oscillations, phonological awareness, and literacy skills. Thereby, the results emphasize altered gamma oscillation not only as a core deficit in dyslexia but also as a potential target for future causal interventions. We discuss these findings considering non-invasive brain stimulation techniques and suggest transcranial alternating current stimulation as a promising approach to normalize dysfunctional oscillations in dyslexia.
Collapse
Affiliation(s)
| | - Tino Zaehle
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
The Modulation of Cognitive Performance with Transcranial Alternating Current Stimulation: A Systematic Review of Frequency-Specific Effects. Brain Sci 2020; 10:brainsci10120932. [PMID: 33276533 PMCID: PMC7761592 DOI: 10.3390/brainsci10120932] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows the manipulation of intrinsic brain oscillations. Numerous studies have applied tACS in the laboratory to enhance cognitive performance. With this systematic review, we aim to provide an overview of frequency-specific tACS effects on a range of cognitive functions in healthy adults. This may help to transfer stimulation protocols to real-world applications. We conducted a systematic literature search on PubMed and Cochrane databases and considered tACS studies in healthy adults (age > 18 years) that focused on cognitive performance. The search yielded n = 109 studies, of which n = 57 met the inclusion criteria. The results indicate that theta-tACS was beneficial for several cognitive functions, including working memory, executive functions, and declarative memory. Gamma-tACS enhanced performance in both auditory and visual perception but it did not change performance in tasks of executive functions. For attention, the results were less consistent but point to an improvement in performance with alpha- or gamma-tACS. We discuss these findings and point to important considerations that would precede a transfer to real-world applications.
Collapse
|
18
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
19
|
Modulation of gamma oscillations as a possible therapeutic tool for neuropsychiatric diseases: A review and perspective. Int J Psychophysiol 2020; 152:15-25. [DOI: 10.1016/j.ijpsycho.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
|
20
|
Kösem A, Bosker HR, Jensen O, Hagoort P, Riecke L. Biasing the Perception of Spoken Words with Transcranial Alternating Current Stimulation. J Cogn Neurosci 2020; 32:1428-1437. [PMID: 32427072 DOI: 10.1162/jocn_a_01579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception [Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875, 2018]. We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual overestimation or underestimation of the vowel's duration. Whereas results from Experiment 1 did not confirm this prediction, results from Experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS leads to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in Experiment 1 versus Experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
Collapse
Affiliation(s)
- Anne Kösem
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Université Lyon 1
| | - Hans Rutger Bosker
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
21
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
22
|
Houweling T, Becker R, Hervais-Adelman A. The noise-resilient brain: Resting-state oscillatory activity predicts words-in-noise recognition. BRAIN AND LANGUAGE 2020; 202:104727. [PMID: 31918321 DOI: 10.1016/j.bandl.2019.104727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The role of neuronal oscillations in the processing of speech has recently come to prominence. Since resting-state (RS) brain activity has been shown to predict both task-related brain activation and behavioural performance, we set out to establish whether inter-individual differences in spectrally-resolved RS-MEG power are associated with variations in words-in-noise recognition in a sample of 88 participants made available by the Human Connectome Project. Positive associations with resilience to noise were observed with power in the range 21 and 29 Hz in a number of areas along the left temporal gyrus and temporo-parietal association areas peaking in left posterior superior temporal gyrus (pSTG). Significant associations were also found in the right posterior superior temporal gyrus in the frequency range 30-40 Hz. We propose that individual differences in words-in-noise performance are related to baseline excitability levels of the neural substrates of phonological processing.
Collapse
Affiliation(s)
- Thomas Houweling
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland.
| | - Robert Becker
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland
| | - Alexis Hervais-Adelman
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland
| |
Collapse
|
23
|
Giustiniani A, Tarantino V, Bonaventura R, Smirni D, Turriziani P, Oliveri M. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behav Brain Res 2019; 376:112170. [DOI: 10.1016/j.bbr.2019.112170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
|
24
|
Preisig BC, Sjerps MJ, Hervais-Adelman A, Kösem A, Hagoort P, Riecke L. Bilateral Gamma/Delta Transcranial Alternating Current Stimulation Affects Interhemispheric Speech Sound Integration. J Cogn Neurosci 2019; 32:1242-1250. [PMID: 31682569 DOI: 10.1162/jocn_a_01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,University of Zurich
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul 2019; 12:1464-1474. [DOI: 10.1016/j.brs.2019.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
|
26
|
Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul 2019; 12:930-937. [DOI: 10.1016/j.brs.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 11/29/2022] Open
|
27
|
Cabral-Calderin Y, Wilke M. Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation. Neuroscientist 2019; 26:57-73. [PMID: 30730265 PMCID: PMC7003153 DOI: 10.1177/1073858419828646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain oscillations are regarded as important for perception as they open and close time windows for neural spiking to enable the effective communication within and across brain regions. In the past, studies on perception primarily relied on the use of electrophysiological techniques for probing a correlative link between brain oscillations and perception. The emergence of noninvasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) provides the possibility to study the causal contribution of specific oscillatory frequencies to perception. Here, we review the studies on visual, auditory, and somatosensory perception that employed tACS to probe the causality of brain oscillations for perception. The current literature is consistent with a causal role of alpha and gamma oscillations in parieto-occipital regions for visual perception and theta and gamma oscillations in auditory cortices for auditory perception. In addition, the sensory gating by alpha oscillations applies not only to the visual but also to the somatosensory domain. We conclude that albeit more refined perceptual paradigms and individualized stimulation practices remain to be systematically adopted, tACS is a promising tool for establishing a causal link between neural oscillations and perception.
Collapse
Affiliation(s)
- Yuranny Cabral-Calderin
- MEG Unit, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Resilience Center, University Medical Center Mainz, Mainz, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany.,German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
28
|
Slow Theta tACS of the Right Parietal Cortex Enhances Contralateral Visual Working Memory Capacity. Brain Topogr 2019; 32:477-481. [DOI: 10.1007/s10548-019-00702-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
|
29
|
Asamoah B, Khatoun A, Mc Laughlin M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 2019; 10:266. [PMID: 30655523 PMCID: PMC6336776 DOI: 10.1038/s41467-018-08183-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method which has been shown to modulate hearing, motor, cognitive and memory function. However, the mechanisms underpinning these findings are controversial, as studies show that the current reaching the cortex may not be strong enough to entrain neural activity. Here, we propose a new hypothesis to reconcile these opposing results: tACS effects are caused by transcutaneous stimulation of peripheral nerves in the skin and not transcranial stimulation of cortical neurons. Rhythmic activity from peripheral nerves then entrains cortical neurons. A series of experiments in rats and humans isolated the transcranial and transcutaneous mechanisms and showed that the reported effects of tACS on the motor system can be caused by transcutaneous stimulation of peripheral nerves. Whether or not the transcutaneous mechanism will generalize to tACS effects on other systems is debatable but should be investigated. Transcranial alternating current stimulation (tACS) uses weak electrical currents, applied to the head, to modulate brain activity. Here, the authors show that contrary to previous assumptions, the effects of tACS on the brain may be mediated by its effect on peripheral nerves in the skin, not direct.
Collapse
Affiliation(s)
- Boateng Asamoah
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Ahmad Khatoun
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
30
|
Loffler BS, Stecher HI, Fudickar S, de Sordi D, Otto-Sobotka F, Hein A, Herrmann CS. Counteracting the Slowdown of Reaction Times in a Vigilance Experiment With 40-Hz Transcranial Alternating Current Stimulation. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2053-2061. [PMID: 30207962 DOI: 10.1109/tnsre.2018.2869471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Indicators for a decrement in vigilance are a slowdown in reaction times and an increase in alpha power in the electroencephalogram in posterior regions of the brain. Transcranial alternating current stimulation (tACS) is a neuropsychological technique that has been found to interact with intrinsic brain oscillations and is able to enhance cognitive and behavioral performance. Recent studies show that tACS in the gamma frequency range (30-80 Hz) is able to downregulate amplitudes in the alpha frequency range (8-12 Hz), in accordance to the effect referred to as cross-frequency coupling, where intrinsic alpha and gamma waves modulate each other. We applied 40 Hz gamma-tACS to the visual cortex during a vigilance experiment and investigated if stimulation improves reaction times and error rates with time-on-task. In our sham controlled experiment, participants completed two blocks of 30 minutes duration while performing the same visual two-choice task. The first block was used as BASELINE. A statistical analysis with a linear mixed model revealed a significantly lower increase of modeled reaction times over time in the INTERVENTION-block of the tACS-group as compared with their BASELINE-block whereas there was no significant change between the BASELINE- and INTERVENTION-block for the SHAM-group. Error rates did not differ between groups. This paper indicates that gamma-tACS can enhance performance in vigilance tasks as it significantly decreased the slowdown of reaction times in our study.
Collapse
|
31
|
Andoh J, Matsushita R, Zatorre RJ. Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Front Neurosci 2018; 12:469. [PMID: 30057522 PMCID: PMC6053524 DOI: 10.3389/fnins.2018.00469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) has been widely used as a research tool to modulate cortical excitability of motor as well as non-motor areas, including auditory or language-related areas. NIBS, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have also been used in clinical settings, with however variable therapeutic outcome, highlighting the need to better understand the mechanisms underlying NIBS techniques. TMS was initially used to address causality between specific brain areas and related behavior, such as language production, providing non-invasive alternatives to lesion studies. Recent literature however suggests that the relationship is not as straightforward as originally thought, and that TMS can show both linear and non-linear modulation of brain responses, highlighting complex network dynamics. In particular, in the last decade, NIBS studies have enabled further advances in our understanding of auditory processing and its underlying functional organization. For instance, NIBS studies showed that even when only one auditory cortex is stimulated unilaterally, bilateral modulation may result, thereby highlighting the influence of functional connectivity between auditory cortices. Additional neuromodulation techniques such as transcranial alternating current stimulation or transcranial random noise stimulation have been used to target frequency-specific neural oscillations of the auditory cortex, thereby providing further insight into modulation of auditory functions. All these NIBS techniques offer different perspectives into the function and organization of auditory cortex. However, further research should be carried out to assess the mode of action and long-term effects of NIBS to optimize their use in clinical settings.
Collapse
Affiliation(s)
- Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
32
|
Baltus A, Vosskuhl J, Boetzel C, Herrmann CS. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people. Eur J Neurosci 2018; 51:1328-1338. [PMID: 29754449 DOI: 10.1111/ejn.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/23/2018] [Indexed: 11/28/2022]
Abstract
Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition), while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: Elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance.
Collapse
Affiliation(s)
- Alina Baltus
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Cindy Boetzel
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph Siegfried Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
33
|
Wilsch A, Neuling T, Obleser J, Herrmann CS. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage 2018; 172:766-774. [PMID: 29355765 DOI: 10.1016/j.neuroimage.2018.01.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 02/03/2023] Open
Abstract
Cortical entrainment of the auditory cortex to the broadband temporal envelope of a speech signal is crucial for speech comprehension. Entrainment results in phases of high and low neural excitability, which structure and decode the incoming speech signal. Entrainment to speech is strongest in the theta frequency range (4-8 Hz), the average frequency of the speech envelope. If a speech signal is degraded, entrainment to the speech envelope is weaker and speech intelligibility declines. Besides perceptually evoked cortical entrainment, transcranial alternating current stimulation (tACS) entrains neural oscillations by applying an electric signal to the brain. Accordingly, tACS-induced entrainment in auditory cortex has been shown to improve auditory perception. The aim of the current study was to modulate speech intelligibility externally by means of tACS such that the electric current corresponds to the envelope of the presented speech stream (i.e., envelope-tACS). Participants performed the Oldenburg sentence test with sentences presented in noise in combination with envelope-tACS. Critically, tACS was induced at time lags of 0-250 ms in 50-ms steps relative to sentence onset (auditory stimuli were simultaneous to or preceded tACS). We performed single-subject sinusoidal, linear, and quadratic fits to the sentence comprehension performance across the time lags. We could show that the sinusoidal fit described the modulation of sentence comprehension best. Importantly, the average frequency of the sinusoidal fit was 5.12 Hz, corresponding to the peaks of the amplitude spectrum of the stimulated envelopes. This finding was supported by a significant 5-Hz peak in the average power spectrum of individual performance time series. Altogether, envelope-tACS modulates intelligibility of speech in noise, presumably by enhancing and disrupting (time lag with in- or out-of-phase stimulation, respectively) cortical entrainment to the speech envelope in auditory cortex.
Collapse
Affiliation(s)
- Anna Wilsch
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Toralf Neuling
- Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany.
| |
Collapse
|
34
|
Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci 2017; 11:214. [PMID: 28928634 PMCID: PMC5591642 DOI: 10.3389/fncel.2017.00214] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding.
Collapse
Affiliation(s)
- Amir V Tavakoli
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Department of Psychology, University of California, Los AngelesLos Angeles, CA, United States
| | - Kyongsik Yun
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Computation and Neural Systems, California Institute of TechnologyPasadena, CA, United States.,Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, United States
| |
Collapse
|
35
|
Zoefel B, Davis MH. Transcranial electric stimulation for the investigation of speech perception and comprehension. LANGUAGE, COGNITION AND NEUROSCIENCE 2017; 32:910-923. [PMID: 28670598 PMCID: PMC5470108 DOI: 10.1080/23273798.2016.1247970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
Transcranial electric stimulation (tES), comprising transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), involves applying weak electrical current to the scalp, which can be used to modulate membrane potentials and thereby modify neural activity. Critically, behavioural or perceptual consequences of this modulation provide evidence for a causal role of neural activity in the stimulated brain region for the observed outcome. We present tES as a tool for the investigation of which neural responses are necessary for successful speech perception and comprehension. We summarise existing studies, along with challenges that need to be overcome, potential solutions, and future directions. We conclude that, although standardised stimulation parameters still need to be established, tES is a promising tool for revealing the neural basis of speech processing. Future research can use this method to explore the causal role of brain regions and neural processes for the perception and comprehension of speech.
Collapse
|
36
|
Rufener KS, Ruhnau P, Heinze HJ, Zaehle T. Transcranial Random Noise Stimulation (tRNS) Shapes the Processing of Rapidly Changing Auditory Information. Front Cell Neurosci 2017. [PMID: 28642686 PMCID: PMC5463504 DOI: 10.3389/fncel.2017.00162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural oscillations in the gamma range are the dominant rhythmic activation pattern in the human auditory cortex. These gamma oscillations are functionally relevant for the processing of rapidly changing acoustic information in both speech and non-speech sounds. Accordingly, there is a tight link between the temporal resolution ability of the auditory system and inherent neural gamma oscillations. Transcranial random noise stimulation (tRNS) has been demonstrated to specifically increase gamma oscillation in the human auditory cortex. However, neither the physiological mechanisms of tRNS nor the behavioral consequences of this intervention are completely understood. In the present study we stimulated the human auditory cortex bilaterally with tRNS while EEG was continuously measured. Modulations in the participants’ temporal and spectral resolution ability were investigated by means of a gap detection task and a pitch discrimination task. Compared to sham, auditory tRNS increased the detection rate for near-threshold stimuli in the temporal domain only, while no such effect was present for the discrimination of spectral features. Behavioral findings were paralleled by reduced peak latencies of the P50 and N1 component of the auditory event-related potentials (ERP) indicating an impact on early sensory processing. The facilitating effect of tRNS was limited to the processing of near-threshold stimuli while stimuli clearly below and above the individual perception threshold were not affected by tRNS. This non-linear relationship between the signal-to-noise level of the presented stimuli and the effect of stimulation further qualifies stochastic resonance (SR) as the underlying mechanism of tRNS on auditory processing. Our results demonstrate a tRNS related improvement in acoustic perception of time critical auditory information and, thus, provide further indices that auditory tRNS can amplify the resonance frequency of the auditory system.
Collapse
Affiliation(s)
| | - Philipp Ruhnau
- Department of Neurology, Otto-von-Guericke UniversityMagdeburg, Germany
| | | | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|