1
|
Wysokiński A, Pazdrak M, Mazerant-Zielińska A, Szczakowska A. Safety and Blinding of Transcranial Direct Current Stimulation in Schizophrenia Patients. J ECT 2025:00124509-990000000-00284. [PMID: 40228176 DOI: 10.1097/yct.0000000000001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a method of noninvasive brain stimulation. tDCS clinical efficacy is debatable, but it was proved to be effective at the neurophysiological level. tDCS has a very good safety profile in human subjects. Because the method has been more frequently studied in patients with schizophrenia, we wanted to analyze the safety and tolerability of tDCS treatment in this population. We also evaluated blinding quality of tDCS stimulations. MATERIAL AND METHODS All stimulations were performed using the DC-Stimulator PLUS (neuroCare, Germany) with the sham module installed. For all the stimulations, 2.0-mA current and 5 × 7-cm anode and cathode rubber electrodes in saline-soaked sponges were used. RESULTS We collected and evaluated safety data in a large dataset of 1139 tDCS stimulations in patients with schizophrenia. No serious adverse events were recorded. None of the subjects discontinued tDCS treatment due to side effects. All the reported events resolved spontaneously within 30 minutes after the tDCS session. In approximately 17% of all the stimulations, no side effects were reported by the patients. The 2 most frequent types of side effects were itching/tingling (reported by 68.4% of the subjects) and burning/warmth sensations (57.4%, when combined). DISCUSSION This study confirms that tDCS is safe and well tolerated by patients with schizophrenia. The most frequent side effects are itching/tingling and burning/warmth sensations, all of low severity. We found that blinding of tDCS stimulations is imperfect. We recommend that blinding assessment become a routine part of sham-controlled tDCS studies.
Collapse
Affiliation(s)
- Adam Wysokiński
- From the Department of Old Age Psychiatry and Psychotic Disorders Medical University of Lodz, Poland
| | | | | | | |
Collapse
|
2
|
van der Groen O, Rafique SA, Willmot N, Murphy MG, Tisnovsky E, Brunyé TT. Transcutaneous and transcranial electrical stimulation for enhancing military performance: an update and systematic review. Front Hum Neurosci 2025; 19:1501209. [PMID: 40098747 PMCID: PMC11911350 DOI: 10.3389/fnhum.2025.1501209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Electrical stimulation (ES), including transcranial electrical stimulation (tES) and transcutaneous vagus nerve stimulation (tVNS), has shown potential for cognitive enhancement in military contexts. Various types of ES, such as transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), modulate neuronal membrane potentials and cortical excitability, potentially improving cognitive functions relevant to military training and operations. Methods This systematic review updates previous findings by examining studies published between 2019 and 2024 that investigated electrical stimulation effects on cognitive performance in military personnel and tasks. We focused on whether the studies addressed key questions about the generalizability of lab findings to military tasks, the frequency and intensity of adverse effects, the impact of repeated ES administration, and the ethical and regulatory considerations for its use in potentially vulnerable military populations. Results Eleven studies met the inclusion criteria; most demonstrated overall low to some concerns, however, two of these had overall high risk of bias. While tES and tVNS showed some promise for enhancing multitasking and visual search performance, the results were mixed, with no reliable effects on vigilance tasks. Discussion The reviewed studies highlight the need for a better understanding of ES mechanisms, optimal stimulation parameters, and individual differences in response to ES. They also highlight the importance of conducting high-powered research in military settings to evaluate the efficacy, safety, and ethical implications of ES. Future research should address the generalizability of lab-based results to real-world military tasks, monitor the frequency and intensity of adverse effects, and explore the long-term impacts of repeated administration. Furthermore, ethical and regulatory considerations are crucial for the responsible application of ES in military contexts, and a series of outstanding questions is posed to guide continuing research in this domain.
Collapse
Affiliation(s)
- Onno van der Groen
- Defence Science and Technology Group, Human and Decision Sciences, Department of Defence, Edinburgh, SA, Australia
| | - Sara A. Rafique
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Nick Willmot
- Defence Science and Technology Group, Human and Decision Sciences, Department of Defence, Edinburgh, SA, Australia
| | - Margaret G. Murphy
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Eulalia Tisnovsky
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Tad T. Brunyé
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
3
|
Mujib MD, Rao AZ, Haque MFU, Alokaily AO, Hussain SS, Aldohbayb AA, Qazi SA, Hasan MA. Modulated theta band frequency with binaural beat stimulation correlates with improved cognitive scores in Alzheimer's patients. Front Aging Neurosci 2025; 17:1543282. [PMID: 40099247 PMCID: PMC11911351 DOI: 10.3389/fnagi.2025.1543282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Alzheimer's disease (AD) affects 50 million individuals worldwide, a number projected to triple by 2050. Due to discomfort through electrical and magnetic neuromodulation technologies, this is the first study to propose the potential of auditory binaural beat (BB) stimulation at an alpha frequency (10 Hz) for enhancing cognitive and neurological outcomes in AD patients. Methods Twenty-five patients were divided into the experimental-Group (n = 15) and control-Group (n = 10). Psychometric and neurological assessments were conducted Pre-Treatment (Day 1) and Post-Treatment (Day 14) following consecutive days of binaural beats (BB) or auditory tone stimulation administered from Day 2 to Day 13. Results A two-way ANOVA revealed a significant main effect of group (F = 6.087, p = 0.016) and session (F = 3.859, p = 0.024) on MMSE scores, with the experimental group showing significant improvement in MMSE scores (t = 7.33, p = 0.00000012) compared to the control group (p = 0.2306). Paired t-tests revealed a significant reduction in depression scores (DASS-21, t = 1.701, p = 0.0253) in the experimental group, while no significant improvements were noted in the control group. EEG recordings revealed significant changes in α-band, β-band, and γ-band power (p < 0.05). Moreover, The correlation between EEG bands and MMSE subparts showed that increased θ-band power in the experimental group was positively correlated (p < 0.05) with the frontal region during language tasks and in the frontal and central regions during registration and orientation tasks, indicating potential neurocognitive benefits. Discussion The results of this research imply that BB stimulation has untapped potential as a non-invasive therapy for patients with AD, hence there is the need for further studies to manage the dementia epidemic.
Collapse
Affiliation(s)
- Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmad Zahid Rao
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Muhammad Fahim Ul Haque
- Department of Telecommunication Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmad O Alokaily
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Syeda Sehar Hussain
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmed A Aldohbayb
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Saad Ahmed Qazi
- Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Neurocomputation Lab, National Center of Artificial Intelligence, NED University of Engineering & Technology, Karachi, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Neurocomputation Lab, National Center of Artificial Intelligence, NED University of Engineering & Technology, Karachi, Pakistan
| |
Collapse
|
4
|
Cassarà AM, Newton TH, Zhuang K, Regel SJ, Achermann P, Pascual‐Leone A, Kuster N, Neufeld E. Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part I: Principles of Electrical Neuromodulation and Adverse Effects. Bioelectromagnetics 2025; 46:e22542. [PMID: 39921360 PMCID: PMC11806287 DOI: 10.1002/bem.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. In order to inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. Part I of this effort, described here, comprises a summary of the current knowledge pertaining to the safety of TIS and related techniques. Specifically, we provide: i) a broad overview of the electrophysiological impacts neurostimulation, ii) a review of the (bio-)physical principles underlying the mechanisms of action of transcranial alternating/direct stimulation (tACS/tDCS), deep brain stimulation (DBS), and TIS, and iii) a comprehensive survey of the adverse effects (AEs) associated with each technique as reported in the scientific literature and regulatory and clinical databases. In Part II, we perform an in silico study to determine field exposure metrics for tDCS/tACS and DBS under normal (safe) operating conditions and infer frequency-dependent current thresholds for TIS that result in equivalent levels of exposure.
Collapse
Affiliation(s)
- Antonino M. Cassarà
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Taylor H. Newton
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Katie Zhuang
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | | | - Peter Achermann
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Alvaro Pascual‐Leone
- TI Solutions AGZurichSwitzerland
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLifeBostonMassachusettsUSA
| | - Niels Kuster
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
- Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
| |
Collapse
|
5
|
Tecchio F, Bertoli M, Sbragia E, Stara S, Pasqualetti P, L'Abbate T, Croce P, Pizzichino A, Cancelli A, Armonaite K, Cecconi F, Paulon L, Inglese M. Fatigue relief in multiple sclerosis by personalized neuromodulation: A multicenter pilot study [FaremusGE]. Mult Scler Relat Disord 2025; 94:106276. [PMID: 39842388 DOI: 10.1016/j.msard.2025.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND A recent application of the GRADE guidelines indicated Faremus, a 5-day neuromodulation for 15 min per day via transcranial direct current stimulation (tDCS), as medium to highly recommendable for alleviating fatigue in multiple sclerosis (MS). METHODS With this pilot study we aimed to evaluate the feasibility, acceptance, safety, and effectiveness of the Faremus treatment carried out in a multicenter context. The Rome unit prepared the intervention, supplied the personalized electrodes to the San Martino Hospital in Genova, where the neurological team enrolled the population of fatigued people with multiple sclerosis (PwMS) and carried out the treatment. RESULTS All 17 enrolled patients completed treatment, reporting optimal acceptance and safety when using Faremus in the multicenter setting. The team involved, including neurologists, neurophysiopathology technicians, engineers, physicists, and psychologists expressed high appreciation (average score 8 out of 10). The treatment improved fatigue symptoms by an average of 27%, to levels comparable with previous studies. Similarly, mild depressive symptoms improved by an average of 38%. CONCLUSIONS The Faremus personalized electroceutical intervention, a 5-day anodal tDCS over bilateral whole-body somatosensory cortex with occipital cathode, is well accepted and can be applied feasibly, safely and effectively in a multicenter setting, offering a reliable tool to relieve fatigue-related symptoms, thus supporting the quality of life of fatigued people with MS. The present study lays a starting point for the involvement of multiple MS units nationwide in offering therapeutic enrichment for their fatigued patients.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy.
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Neurology, Galliera Hospital, Genoa, Italy
| | - Silvia Stara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Section of Medical Statistics, Sapienza Università di Roma, Rome, Italy
| | - Teresa L'Abbate
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Uninettuno University, Rome, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | | | - Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | | | - Federico Cecconi
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Independent Researcher, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
6
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Steingräber T, von Grönheim L, Klemm M, Straub J, Sasse L, Veldema J. High-Definition Trans-Spinal Current Stimulation Improves Balance and Somatosensory Control: A Randomised, Placebo-Controlled Trial. Biomedicines 2024; 12:2379. [PMID: 39457691 PMCID: PMC11504229 DOI: 10.3390/biomedicines12102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES To investigate and compare the effects of three different high-definition (HD) non-invasive current stimulation (NICS) protocols on the spinal cord on support balance and somatosensory abilities in healthy young people. METHODS Fifty-eight students were enrolled in this crossover study. All participants underwent application of (i) 1.5 mA anodal high-definition trans spinal direct current stimulation (HD-tsDCS), (ii) 1.5 mA cathodal HD-tsDCS, (iii) 1.5 mA high-definition trans spinal alternating current stimulation (HD-tsACS), and (iv) sham HD-tsDCS/ACS over the eighth thoracic vertebra in a randomised order. Balance (Y Balance test), deep sensitivity (Tuning Fork Test), and superficial sensitivity (Monofilament Test) of the lower limbs were tested immediately before and after each intervention. RESULTS Balance ability improved significantly following anodal HD-tsDCS and HD-tsACS compared with that following sham HD-tsDCS/ACS. Similarly, deep sensitivity increased significantly with anodal HD-tsDCS and HD-tsACS compared to that with sham HD-tsDCS/ACS and cathodal HD-tsDCS. Furthermore, superficial sensitivity improved significantly following anodal HD-tsDCS compared with that after HD-tsACS and cathodal HD-tsDCS. CONCLUSIONS Our data show that HD-tsNICS effectively modulates the balance and somatosensory control of the lower limbs. Several diseases are associated with illness-induced changes in the spinal network in parallel with sensorimotor disabilities. Non-invasive spinal modulation may be a favourable alternative to conventional brain applications in rehabilitation. Future studies should therefore investigate these promising approaches among cohorts of patients with disabilities.
Collapse
Affiliation(s)
| | | | | | | | | | - Jitka Veldema
- Department of Sport Science, Faculty of Psychology and Sports Science, Bielefeld University, 33501 Bielefeld, Germany; (T.S.)
| |
Collapse
|
8
|
Lyra de Brito Aranha RE, Nascimento JDSD, Sampaio DDA, Torro-Alves N. Combining Transcranial Direct Current Stimulation With Non-Invasive Interventions for Chronic Primary Pain: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2024; 38:616-632. [PMID: 39075920 DOI: 10.1177/15459683241265906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND A growing number of studies has combined transcranial direct current stimulation (tDCS) with other non-invasive non-pharmacological therapies (NINPT) to enhance effects in pain reduction. However, the efficacy of these combined approaches in treating chronic primary pain (CPP) warrants thorough investigation. OBJECTIVE This study aims to evaluate the efficacy of tDCS in conjunction with other NINPT in alleviating pain severity among CPP patients. METHODS We conducted a systematic search for randomized controlled trials (RCTs) comparing the efficacy of tDCS combined with NINPT against control treatments in adult CPP patients. The search spanned multiple databases, including PubMed, EMBASE, LILACS, Scopus, Web of Science, and CENTRAL. RESULTS Our systematic review included 11 RCTs with a total of 449 participants. In our meta-analysis, which comprised 228 participants receiving active-tDCS and 221 receiving sham-tDCS, we found a significant reduction in pain intensity (Standard Mean Difference = -0.73; 95% Confidence Interval (CI) = -1.18 to -0.27; P = .002) with the use of active-tDCS combined with NINPT. CONCLUSION These findings substantiate the therapeutic potential of combining tDCS with other NINPT, highlighting it as an effective treatment modality for reducing pain intensity in CPP patients.
Collapse
Affiliation(s)
| | | | | | - Nelson Torro-Alves
- Cognitive Neuroscience and Behavior Program, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
9
|
Delicado-Miralles M, Flix-Diez L, Gurdiel-Álvarez F, Velasco E, Galán-Calle M, Lerma Lara S. Temporal Dynamics of Adverse Effects across Five Sessions of Transcranial Direct Current Stimulation. Brain Sci 2024; 14:457. [PMID: 38790436 PMCID: PMC11118034 DOI: 10.3390/brainsci14050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Transcranial direct current stimulation (tDCS) is a safe intervention, only producing mild and transient adverse effects (AEs). However, there is no detailed analysis of the pattern of adverse effects in an application transferable to the clinic. Therefore, our objective is to describe the AEs produced by tDCS and its temporal evolution. (2) Methods: A total of 33 young volunteers were randomized into a tDCS or sham group. Participants performed a hand dexterity task while receiving the tDCS or sham intervention (20 min and 1 mA), for five consecutive days. AEs were assessed daily after each intervention and classified as somatosensory, pain, or other effects. (3) Results: The number of AEs was generally increased by tDCS intervention. Specifically, tDCS led to more frequent somatosensory discomfort, characterized by sensations like itching and tingling, alongside painful sensations such as burning, compared to the sham intervention. Additionally, certain adverse events, including neck and arm pain, as well as dizziness and blurry vision, were exclusive to the tDCS group. Interestingly, tDCS produced similar AEs across the days; meanwhile, the somatosensory AEs in the sham group showed a trend to decrease. (4) Conclusions: tDCS produces mild and temporary somatosensory and pain AEs during and across sessions. The different evolution of the AEs between the tDCS and sham protocol could unmask the blinding protocol most used in tDCS studies. Potential solutions for improving blinding protocols for future studies are discussed.
Collapse
Affiliation(s)
- Miguel Delicado-Miralles
- Department of Pathology and Surgery, Center for Translational Research in Physiotherapy, Miguel Hernández University, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - Laura Flix-Diez
- Physiotherapy Faculty, Universidad de Valencia (UV), 46010 Valencia, Spain;
| | - Francisco Gurdiel-Álvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine University of Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Enrique Velasco
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, 3001 Leuven, Belgium;
| | - María Galán-Calle
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Sergio Lerma Lara
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
10
|
LoBue C, McClintock S, Chiang HS, Helphrey J, Thakkar V, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 PMCID: PMC11959453 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Shawn McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Vishal Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| |
Collapse
|
11
|
Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci 2024; 45:55-63. [PMID: 37697027 PMCID: PMC10761524 DOI: 10.1007/s10072-023-07012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.
Collapse
Affiliation(s)
- Daniel S Marín-Medina
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Paula A Arenas-Vargas
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Arias-Botero
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Gómez-Vásquez
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel F Jaramillo-López
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge M Gaspar-Toro
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Boone AE, Noe J, Wolf TJ. Feasibility of Augmenting Cognitive Strategy Training With Non-Invasive Brain Stimulation. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2024; 44:98-105. [PMID: 37264631 DOI: 10.1177/15394492231176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Many individuals post-stroke have difficulty identifying if or how they can continue performing meaningful daily life tasks. The objective of this study was to evaluate the feasibility of metacognitive strategy training (MCST) and transcranial direct current stimulation (tDCS) in chronic stroke. A case series design was used. Participants completed 12 intervention sessions over 4 weeks consisting of 20 min of tDCS and 45 min of MCST to address occupational performance goals. Feasibility outcomes of acceptability and safety/tolerability were evaluated and measures of occupational performance were administered pre- and post-intervention. Participants perceived the intervention to be highly acceptable and relevant to their needs. Large improvements were observed for performance and satisfaction with goals trained (Hedge's g = 2.07 and 2.11, respectively) and untrained (Hedge's g = 1.25 and 1.43, respectively) within the intervention. An intervention combining MCST with tDCS was feasible to administer and positively received by stakeholders; further research is warranted.
Collapse
Affiliation(s)
| | - Jenna Noe
- University of Missouri, Columbia, USA
| | | |
Collapse
|
13
|
Beaumont JD, Dalton M, Davis D, Finlayson G, Nowicky A, Russell M, Barwood MJ. No effect of prefrontal transcranial direct current stimulation (tDCS) on food craving, food reward and subjective appetite in females displaying mild-to-moderate binge-type behaviour. Appetite 2023; 189:106997. [PMID: 37574640 DOI: 10.1016/j.appet.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Previous work suggests there may be an effect of transcranial direct current stimulation (tDCS) on appetite control in people at risk of overconsumption, however findings are inconsistent. This study aimed to further understand the potential eating behaviour trait-dependent effect of tDCS, specifically in those with binge-type behaviour. Seventeen females (23 ± 7 years, 25.4 ± 3.8 kg m-2) with mild-to-moderate binge eating behaviour completed two sessions of double-blind, randomised and counterbalanced anodal and sham tDCS applied over the right dorsolateral prefrontal cortex at 2.0 mA for 20 min. Subjective appetite visual analogue scales (VAS), the Food Craving Questionnaire-State (FCQ-S), and Leeds Food Preference Questionnaire (LFPQ) were completed pre- and post-tDCS. Participants then consumed a fixed-energy meal, followed by the VAS, FCQ-S and LFPQ. No difference between pre- and post-tDCS scores were found across fullness (p = 0.275, BF10 = 0.040), prospective consumption (p = 0.127, BF10 = 0.063), desire to eat (p = 0.247, BF10 = 0.054) or FCQ-S measures (p = 0.918, BF10 = 0.040) when comparing active and sham protocols. Only explicit liking and wanting for high-fat sweet foods were significantly different between conditions, with increased scores following active tDCS. When controlling for baseline hunger, the significant differences were removed (p = 0.138 to 0.161, BF10 = 0.810 to 1.074). The present data does not support the eating behaviour trait dependency of tDCS in a specific cohort of female participants with mild-to-moderate binge eating scores, and results align with those from individuals with healthy trait scores. This suggests participants with sub-clinical binge eating behaviour do not respond to tDCS. Future work should further explore effects in clinical and sub-clinical populations displaying susceptibility to overconsumption and weight gain.
Collapse
Affiliation(s)
- Jordan D Beaumont
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK; Food and Nutrition Group, Sheffield Business School, Sheffield Hallam University, Sheffield, S1 1WB, UK.
| | - Michelle Dalton
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Danielle Davis
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Graham Finlayson
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, LS2 9JU, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mark Russell
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Martin J Barwood
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| |
Collapse
|
14
|
Boscutti A, Murphy N, Cho R, Selvaraj S. Noninvasive Brain Stimulation Techniques for Treatment-Resistant Depression: Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation. Psychiatr Clin North Am 2023; 46:307-329. [PMID: 37149347 DOI: 10.1016/j.psc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcranial magnetic stimulation is a safe, effective, and well-tolerated intervention for depression; it is currently approved for treatment-resistant depression. This article summarizes the mechanism of action, evidence of clinical efficacy, and the clinical aspects of this intervention, including patient evaluation, stimulation parameters selection, and safety considerations. Transcranial direct current stimulation is another neuromodulation treatment for depression; although promising, the technique is not currently approved for clinical use in the United States. The final section outlines the open challenges and future directions of the field.
Collapse
Affiliation(s)
- Andrea Boscutti
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Raymond Cho
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Clinical Implementation of Noninvasive Brain Stimulation in an Outpatient Neurorehabilitation Program. Am J Phys Med Rehabil 2023; 102:S79-S84. [PMID: 36634336 DOI: 10.1097/phm.0000000000002135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT Motor, speech, and cognitive impairments are the most common consequences of neurological disorders. There has been an increasing interest in the use of noninvasive brain stimulation techniques such as transcranial direct current stimulation and transcranial magnetic stimulation to augment the effects of neurorehabilitation. Numerous research studies have shown that transcranial direct current stimulation and transcranial magnetic stimulation are highly promising neuromodulation tools that can work as adjuvants to standard neurorehabilitation services, including physical therapy, occupational therapy, and speech-language pathology. However, to date, there are vast differences in methodology in studies including noninvasive brain stimulation parameters, patient characteristics, time point of intervention after injury, and outcome measures, making it difficult to translate and implement transcranial direct current stimulation and transcranial magnetic stimulation in the clinical setting. Despite this, a series of principles are thought to underlie the effectiveness of noninvasive brain stimulation techniques. We developed a noninvasive brain stimulation rehabilitation program using these principles to provide best practices for applying transcranial direct current stimulation and/or transcranial magnetic stimulation as rehabilitation adjuvants in the clinical setting to help improve neurorehabilitation outcomes. This article outlines our approach, philosophy, and experience.
Collapse
|
16
|
Martin DM, Rushby JA, De Blasio FM, Wearne T, Osborne-Crowley K, Francis H, Xu M, Loo C, McDonald S. The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023; 179:108462. [PMID: 36563998 DOI: 10.1016/j.neuropsychologia.2022.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The effects of transcranial direct current stimulation (tDCS) for improving attention and working memory have been generally mixed and small, potentially due to variability between studies with montages, stimulus parameters and outcome measures. The tDCS montage is an important parameter which determines the degree and intensity of stimulation in targeted brain regions. This study aimed to examine the effects of using three different montages for modulating attention and working memory performance: Bi-frontal, Broad-frontal and Broad-parietal. Ninety-three healthy adults participated in a counterbalanced cross-over study. Participants received both active and sham tDCS with either the Bi-frontal, Broad-frontal or Broad-parietal montage during performance of both a 1- and 2-back task. TDCS montage moderated 2-back working memory reaction time performance, though not accuracy, with faster reaction times observed for active compared to sham tDCS with the Broad-frontal montage only (F (1,90) = 5.26, p = .024, η2 = 0.06). TDCS montage did not significantly moderate performance on the 1-back task. The cognitive effects of tDCS varied according to montage, task, and outcome measure. TDCS administered with the cathode placed extracephalically in a Broad-frontal montage may be beneficial for improving working memory.
Collapse
Affiliation(s)
- Donel M Martin
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia.
| | - Jacqueline A Rushby
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Frances M De Blasio
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Travis Wearne
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | | | - Heather Francis
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Colleen Loo
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| |
Collapse
|
17
|
The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023. [DOI: 10.1016/j.neuropsychologia.2022.10846t2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Lee ARYB, Yau CE, Mai AS, Tan WA, Ong BSY, Yam NE, Ho CSH. Transcranial alternating current stimulation and its effects on cognition and the treatment of psychiatric disorders: a systematic review and meta-analysis. Ther Adv Chronic Dis 2022; 13:20406223221140390. [PMID: 36479141 PMCID: PMC9720798 DOI: 10.1177/20406223221140390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/03/2022] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (TACS) is a non-invasive method of brain stimulation that is hypothesised to alter cortical excitability and brain electrical activity, modulating functional connectivity within the brain. Several trials have demonstrated its potential in treating psychiatric disorders such as depression and schizophrenia. OBJECTIVES To study the efficacy of TACS in ameliorating symptoms of depression and schizophrenia in patients and its effects on cognition in patients and healthy subjects compared to sham stimulation. DESIGN Systematic review with meta-analysis. DATA SOURCES AND METHODS This PROSPERO-registered systematic review (CRD42022331149) is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, EMBASE, CENTRAL and PsycINFO were searched from inception to March 2022. Only randomised-controlled trials were included. RESULTS A total of 12 randomised-controlled trials are reviewed for meta-analysis, with three randomised-controlled trials reporting only effects on cognition in psychiatric and cognitively impaired patients, three trials on cognition in healthy subjects, one trial on cognition in both patients and healthy subjects, one trial on only depression, two on both cognition and depression in patients and two on schizophrenia symptoms. No studies were at significant risk of bias. For cognition, TACS showed significant improvement [positive standardised mean differences (SMD) denoting improvement] over sham stimulation in those with psychiatric disorders with an SMD of 0.60 (95% confidence interval [CI]: 0.14, 1.06). Similarly, among patients with depression, an SMD of 1.14 (95% CI: 0.10, 2.18) was found significantly favouring TACS over sham stimulation. Two studies assessed the effect of TACS on schizophrenia symptoms with mixed results. CONCLUSION TACS has shown promise in ameliorating symptoms of both schizophrenia and depression in patients. TACS also improves cognition in both patients and healthy subjects. However, these findings are limited by the sample size of included studies, and future studies may be required to better our understanding of the potential of TACS. REGISTRATION PROSPERO (CRD42022331149).
Collapse
Affiliation(s)
| | - Chun En Yau
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Aaron Shengting Mai
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Weiling Amanda Tan
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Bernard Soon Yang Ong
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Natalie Elizabeth Yam
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo
Lin School of Medicine, National University of Singapore, NUHS Tower Block,
Level 9, 1E Kent Ridge Road, Singapore 119228
| |
Collapse
|
19
|
Ngan STJ, Chan LK, Chan WC, Lam LCW, Li WK, Lim K, Or E, Pang PF, Poon TK, Wong MCM, Wu YKA, Cheng PWC. High-definition transcranial direct current stimulation (HD-tDCS) as augmentation therapy in late-life depression (LLD) with suboptimal response to treatment-a study protocol for a double-blinded randomized sham-controlled trial. Trials 2022; 23:914. [PMID: 36307858 DOI: 10.1186/s13063-022-06855-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Late-life depression (LLD) has a poorer prognosis and higher relapse rate than younger adults, with up to one third of patients with LLD showing suboptimal response to antidepressant therapy. LLD has been associated with significant impairment in cognition and daily functioning. Few studies have evaluated the therapeutic effects of high-definition transcranial direct current stimulation (HD-tDCS) on depressive and cognitive symptoms of LLD. The current randomized controlled trial assesses the efficacy of HD-tDCS as an augmentation therapy with antidepressants compared to sham-control in subjects with LLD. METHODS Fifty-eight patients with LLD will be recruited and randomly assigned to the active HD-tDCS or sham HD-tDCS group. In both groups, patients will receive the active or sham intervention in addition to their pre-existing antidepressant therapy, for 2 weeks with 5 sessions per week, each lasting 30 min. The primary outcome measures will be the change of depressive symptoms, clinical response and the remission rate as measured with the Hamilton Depression Rating scale (HAMD-17) before and after the intervention, and at the 4th and 12th week after the completed intervention. Secondary outcome measures include cognitive symptoms, anxiety symptoms, daily functioning and adverse effects. DISCUSSION: Older adults with depression are associated with poorer outcomes or unsatisfactory responses to antidepressant therapy, and significant cognitive decline. Therefore, a new effective treatment option is needed. This randomized control trial aims at assessing the efficacy of HD-tDCS on ameliorating the depressive, cognitive and anxiety symptoms, and improving the daily functioning of subjects with LLD. TRIAL REGISTRATION ClinicalTrials.gov NCT05322863. Registered on 11 April 2022.
Collapse
Affiliation(s)
- Sze Ting Joanna Ngan
- New Clinical Building, Queen Mary Hospital, 2/F, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong, Hong Kong
| | - Lap Kei Chan
- Department of Psychiatry, Kwai Chung Hospital, Kwai Chung, Hong Kong, Hong Kong
| | - Wai Chi Chan
- New Clinical Building, Queen Mary Hospital, 2/F, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong, Hong Kong
| | - Linda Chiu Wa Lam
- Department of Psychiatry, Tai Po Hospital, G/F, Multi-Centre, Tai Po, Hong Kong, Hong Kong
| | - Wan Kei Li
- New Clinical Building, Queen Mary Hospital, 2/F, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong, Hong Kong
| | - Kelvin Lim
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ego Or
- New Clinical Building, Queen Mary Hospital, 2/F, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong, Hong Kong
| | - Pui Fai Pang
- Department of Psychiatry, United Christian Hospital, Kwun Tong, Hong Kong, Hong Kong
| | - Ting Keung Poon
- Department of Psychiatry, Kowloon Hospital, Kadoorie Hill, Hong Kong, Hong Kong
| | - Mei Cheung Mimi Wong
- Department of Psychiatry, United Christian Hospital, Kwun Tong, Hong Kong, Hong Kong
| | - Ying King Anna Wu
- Department of Psychiatry, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, Hong Kong
| | - Pak Wing Calvin Cheng
- New Clinical Building, Queen Mary Hospital, 2/F, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Massonet H, Goeleven A, Van den Steen L, Vergauwen A, Baudelet M, Van Haesendonck G, Vanderveken O, Bollen H, van der Molen L, Duprez F, Tomassen P, Nuyts S, Van Nuffelen G. Home-based intensive treatment of chronic radiation-associated dysphagia in head and neck cancer survivors (HIT-CRAD trial). Trials 2022; 23:893. [PMID: 36273210 PMCID: PMC9587548 DOI: 10.1186/s13063-022-06832-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Chronic radiation-associated dysphagia (C-RAD) is considered to be one of the most severe functional impairments in head and neck cancer survivors treated with radiation (RT) or chemoradiation (CRT). Given the major impact of these late toxicities on patients’ health and quality of life, there is a strong need for evidence-based dysphagia management. Although studies report the benefit of strengthening exercises, transference of changes in muscle strength to changes in swallowing function often remains limited. Therefore, combining isolated strengthening exercises with functional training in patients with C-RAD may lead to greater functional gains. Methods This 3-arm multicenter randomized trial aims to compare the efficacy and possible detraining effects of mere strengthening exercises (group 1) with a combination of strengthening exercises and functional swallowing therapy (group 2) and non-invasive brain stimulation added to that combination (group 3) in 105 patients with C-RAD. Patients will be evaluated before and during therapy and 4 weeks after the last therapy session by means of swallowing-related and strength measures and quality of life questionnaires. Discussion Overall, this innovative RCT is expected to provide new insights into the rehabilitation of C-RAD to optimize post-treatment swallowing function. Trial registration International Standard Randomized Controlled Trials Number (ISRCTN) registry ID ISRCTN57028065. Registration was accepted on 15 July 2021.
Collapse
Affiliation(s)
- Hanne Massonet
- Faculty of Medicine, Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology - Delgutology, KU Leuven, Leuven, Belgium. .,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium. .,Department of Head and Neck Surgery, Swallowing Clinic, University Hospitals Leuven, Leuven, Belgium. .,Department of ENT, Swallowing Clinic, University Hospitals Leuven, Leuven, Belgium.
| | - Ann Goeleven
- Faculty of Medicine, Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology - Delgutology, KU Leuven, Leuven, Belgium.,Department of Head and Neck Surgery, Swallowing Clinic, University Hospitals Leuven, Leuven, Belgium.,Department of ENT, Swallowing Clinic, University Hospitals Leuven, Leuven, Belgium
| | - Leen Van den Steen
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otolaryngology and Head and Neck Surgery, Rehabilitation Centre for Communication Disorders, Antwerp University Hospital, Antwerp, Belgium
| | - Alice Vergauwen
- Department of Otolaryngology and Head and Neck Surgery, Rehabilitation Centre for Communication Disorders, Antwerp University Hospital, Antwerp, Belgium
| | - Margot Baudelet
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gilles Van Haesendonck
- Department of Otolaryngology and Head and Neck Surgery, Rehabilitation Centre for Communication Disorders, Antwerp University Hospital, Antwerp, Belgium
| | - Olivier Vanderveken
- Department of Otolaryngology and Head and Neck Surgery, Rehabilitation Centre for Communication Disorders, Antwerp University Hospital, Antwerp, Belgium
| | - Heleen Bollen
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Lisette van der Molen
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of Humanities, University of Amsterdam, Amsterdam, The Netherlands
| | - Fréderic Duprez
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Peter Tomassen
- Department of Head and Neck Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sandra Nuyts
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Gwen Van Nuffelen
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otolaryngology and Head and Neck Surgery, Rehabilitation Centre for Communication Disorders, Antwerp University Hospital, Antwerp, Belgium.,Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Adhia DB, Mani R, Reynolds JN, Hall M, Vanneste S, De Ridder D. High-Definition Transcranial Infraslow Pink-Noise Stimulation Can Influence Functional and Effective Cortical Connectivity in Individuals With Chronic Low Back Pain: A Pilot Randomized Placebo-Controlled Study. Neuromodulation 2022:S1094-7159(22)01225-9. [DOI: 10.1016/j.neurom.2022.08.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
|
22
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
23
|
Chhatbar PY, Liu S, Ramakrishnan V, George MS, Kautz SA, Feng W. Microdermabrasion facilitates direct current stimulation by lowering skin resistance. SKIN HEALTH AND DISEASE 2022; 2:e76. [PMID: 36092266 PMCID: PMC9435456 DOI: 10.1002/ski2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
Background Transcranial direct current stimulation (tDCS) is reported to induce irritating skin sensations and occasional skin injuries, which limits the applied tDCS dose. Additionally, tDCS hardware safety profile prevents high current delivery when skin resistance is high. Objective To test if decreasing skin resistance can enable high-dose tDCS delivery without increasing tDCS-related skin sensations or device hardware limits. Methods We compared the effect of microdermabrasion and sonication on 2 mA direct current stimulation (DCS) through forearm skin for 2-3 min on 20 subjects. We also surveyed the subjects using a questionnaire throughout the procedure. We used a linear mixed-effects model for repeated-measures and multiple logistic regression, with adjustments for age, race, gender and visit. Results Microdermabrasion, with/out sonication, led to significant decrease in skin resistance (1.6 ± 0.1 kΩ or ∼32% decrease, p < 0.0001). The decrease with sonication alone (0.4 ± 0.1 kΩ or ∼7% decrease, p = 0.0016) was comparable to that of sham (0.3 ± 0.1 kΩ or ∼5% decrease, p = 0.0414). There was no increase in the skin-electrode interface temperature. The perceived DCS-related sensations did not differ across skin preparation procedures (p > 0.16), but microdermabrasion (when not combined with sonication) led to increased perceived sensation (p < 0.01). Conclusions Microdermabrasion (with/out sonication) resulted in reduced skin resistance without increase in perceived skin sensations with DCS. Higher current can be delivered with microdermabrasion-pre-treated skin without changing the device hardware while reducing, otherwise higher voltage required to deliver the same amount of current.
Collapse
Affiliation(s)
- P. Y. Chhatbar
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - S. Liu
- Department of NeurologyTiantan HospitalCapital Medical UniversityBeijingChina
| | - V. Ramakrishnan
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - M. S. George
- Psychiatry and Behavioral ScienceBrain Stimulation LaboratoryCollege of MedicineCharlestonSouth CarolinaUSA
- Department of Health Science & ResearchCollege of Health ProfessionsMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson VA Medical CenterCharlestonSouth CarolinaUSA
| | - S. A. Kautz
- Department of Health Science & ResearchCollege of Health ProfessionsMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson VA Medical CenterCharlestonSouth CarolinaUSA
| | - W. Feng
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Health Science & ResearchCollege of Health ProfessionsMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
24
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
25
|
Aksu S, Şirin TC, Hasırcı Bayır BR, Ulukan Ç, Soyata AZ, Kurt A, Karamürsel S, Baykan B. Long-Term Prophylactic Transcranial Direct Current Stimulation Ameliorates Allodynia and Improves Clinical Outcomes in Individuals With Migraine. Neuromodulation 2022:S1094-7159(22)00759-0. [DOI: 10.1016/j.neurom.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 10/15/2022]
|
26
|
Efficacy and Safety of Transcranial Electric Stimulation during the Perinatal Period: A Systematic Literature Review and Three Case Reports. J Clin Med 2022; 11:jcm11144048. [PMID: 35887812 PMCID: PMC9318834 DOI: 10.3390/jcm11144048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The perinatal period is an at-risk period for the emergence or decompensation of psychiatric disorders. Transcranial electrical stimulation (tES) is an effective and safe treatment for many psychiatric disorders. Given the reluctance to use pharmacological treatments during pregnancy or breastfeeding, tES may be an interesting treatment to consider. Our study aims to evaluate the efficacy and safety of tES in the perinatal period through a systematic literature review followed by three original case reports. Method: Following PRISMA guidelines, a systematic review of MEDLINE and ScienceDirect was undertaken to identify studies on tES on women during the perinatal period. The initial research was conducted until 31 December 2021 and search terms included: tDCS, transcranial direct current stimulation, tACS, transcranial alternating current stimulation, tRNS, transcranial random noise stimulation, pregnancy, perinatal, postnatal, and postpartum. Results: Seven studies reporting on 33 women during the perinatal period met the eligibility criteria. No serious adverse effects for the mother or child were reported. Data were limited to the use of tES during pregnancy in patients with schizophrenia or unipolar depression. In addition, we reported three original case reports illustrating the efficacy and safety of tDCS: in a pregnant woman with bipolar depression, in a pregnant woman with post-traumatic stress disorder (sham tDCS), and in a breastfeeding woman with postpartum depression. Conclusions: The results are encouraging, making tES a potentially safe and effective treatment in the perinatal period. Larger studies are needed to confirm these initial results, and any adverse effects on the mother or child should be reported. In addition, research perspectives on the medico-economic benefits of tES, and its realization at home, are to be investigated in the future.
Collapse
|
27
|
The effects and mechanisms of transcranial ultrasound stimulation combined with cognitive rehabilitation on post-stroke cognitive impairment. Neurol Sci 2022; 43:4315-4321. [DOI: 10.1007/s10072-022-05906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
28
|
Effective Transcranial Direct Current Stimulation Parameters for the Modulation of Eating Behavior: A Systematic Literature Review and Meta-Analysis. Psychosom Med 2022; 84:646-657. [PMID: 35412517 DOI: 10.1097/psy.0000000000001074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to consider the effect of differing transcranial direct current stimulation (tDCS) parameters on eating-related measures and how issues with experimental design (e.g., inadequate blinding) or parameters variation may drive equivocal effects. METHODS Literature searches were conducted across MEDLINE, PsycINFO, Scopus, and Science Direct. Studies using conventional sham-controlled tDCS to modify eating-related measures in adult human participants were included. A total of 1135 articles were identified and screened by two independent authors. Study quality was assessed using the Risk of Bias tool. Random-effects meta-analyses were performed, with subgroup analyses to determine differences between parameter sets. RESULTS We identified 28 eligible studies; 7 showed low risk of bias, with the remaining studies showing bias arising from issues implementing or reporting blinding protocols. Large variation in applied parameters was found, including montage, current intensity and density, participant and researcher blinding, and the use of online or offline tasks. The application of differing parameters seemed to alter the effects of tDCS on eating-related measures, particularly for current density ( g = -0.25 to 0.31), and when comparing single-session ( g = -0.08 to 0.01) versus multisession protocols ( g = -0.34 to -0.29). Some parameters result in null effects. CONCLUSIONS The absence of tDCS-mediated change in eating-related measures may be driven by variation in applied parameters. Consistent application of parameters that seem to be effective for modulating eating behavior is important for identifying the potential impact of tDCS. Using the findings of this review, we propose a series of parameters that researchers should apply in their work.
Collapse
|
29
|
Pilloni G, Charvet LE, Bikson M, Palekar N, Kim MJ. Potential of Transcranial Direct Current Stimulation in Alzheimer's Disease: Optimizing Trials Toward Clinical Use. J Clin Neurol 2022; 18:391-400. [PMID: 35796264 PMCID: PMC9262447 DOI: 10.3988/jcn.2022.18.4.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive method for stimulating the brain that is rapidly developing into a treatment method for various neurological and psychiatric conditions. In particular, there is growing evidence of a therapeutic role for tDCS in ameliorating or delaying the cognitive decline in Alzheimer's disease (AD). We provide a brief overview of the current development and application status of tDCS as a nonpharmacological therapeutic method for AD and mild cognitive impairment (MCI), summarize the levels of evidence, and identify the improvements needed for clinical applications. We also suggest future directions for large-scale controlled clinical trials of tDCS in AD and MCI, and emphasize the necessity of identifying the mechanistic targets to facilitate clinical applications.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Leigh E Charvet
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, NY, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Min-Jeong Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
30
|
Adhia DB, Mani R, Reynolds JNJ, Vanneste S, De Ridder D. High-definition transcranial infraslow pink noise stimulation for chronic low back pain: protocol for a pilot, safety and feasibility randomised placebo-controlled trial. BMJ Open 2022; 12:e056842. [PMID: 35705354 PMCID: PMC9204463 DOI: 10.1136/bmjopen-2021-056842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Chronic low back pain (CLBP) is a common disabling health condition. Current treatments demonstrate modest effects, warranting newer therapies. Brain imaging demonstrates altered electrical activities in cortical areas responsible for pain modulation, emotional and sensory components of pain experience. Treatments targeting to change electrical activities of these key brain regions may produce clinical benefits. This pilot study aims to (1) evaluate feasibility, safety and acceptability of a novel neuromodulation technique, high-definition transcranial infraslow pink noise stimulation (HD-tIPNS), in people with CLBP, (2) explore the trend of effect of HD-tIPNS on pain and function, and (3) derive treatment estimates to support sample size calculation for a fully powered trial should trends of effectiveness be present. METHODS AND ANALYSIS A pilot, triple-blinded randomised two-arm placebo-controlled parallel trial. Participants (n=40) with CLBP will be randomised to either sham stimulation or HD-tIPNS (targeting somatosensory cortex and dorsal and pregenual anterior cingulate cortex). Primary outcomes include feasibility and safety measures, and clinical outcomes of pain (Brief Pain Inventory) and disability (Roland-Morris disability questionnaire). Secondary measures include clinical, psychological, quantitative sensory testing and electroencephalography collected at baseline, immediately postintervention, and at 1-week, 1-month and 3 months postintervention. All data will be analysed descriptively. A nested qualitative study will assess participants perceptions about acceptability of intervention and analysed thematically. ETHICS AND DISSEMINATION Ethical approval has been obtained from Health and Disability Ethics Committee (Ref:20/NTB/67). Findings will be reported to regulatory and funding bodies, presented at conferences, and published in a scientific journal. TRIAL REGISTRATION NUMBER ACTRN12620000505909p.
Collapse
Affiliation(s)
- Divya Bharatkumar Adhia
- Department of Surgical Sciences, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy and the Brain Health Research Centre, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - Sven Vanneste
- School of Psychology, Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| |
Collapse
|
31
|
Jiang X, Dahmani S, Bronshteyn M, Yang FN, Ryan JP, Gallagher RC, Damera SR, Kumar PN, Moore DJ, Ellis RJ, Turkeltaub PE. Cingulate transcranial direct current stimulation in adults with HIV. PLoS One 2022; 17:e0269491. [PMID: 35658059 PMCID: PMC9165807 DOI: 10.1371/journal.pone.0269491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neuronal dysfunction plays an important role in the high prevalence of HIV-associated neurocognitive disorders (HAND) in people with HIV (PWH). Transcranial direct current stimulation (tDCS)-with its capability to improve neuronal function-may have the potential to serve as an alternative therapeutic approach for HAND. Brain imaging and neurobehavioral studies provide converging evidence that injury to the anterior cingulate cortex (ACC) is highly prevalent and contributes to HAND in PWH, suggesting that ACC may serve as a potential neuromodulation target for HAND. Here we conducted a randomized, double-blind, placebo-controlled, partial crossover pilot study to test the safety, tolerability, and potential efficacy of anodal tDCS over cingulate cortex in adults with HIV, with a focus on the dorsal ACC (dACC). METHODS Eleven PWH (47-69 years old, 2 females, 100% African Americans, disease duration 16-36 years) participated in the study, which had two phases, Phase 1 and Phase 2. During Phase 1, participants were randomized to receive ten sessions of sham (n = 4) or cingulate tDCS (n = 7) over the course of 2-3 weeks. Treatment assignments were unknown to the participants and the technicians. Neuropsychology and MRI data were collected from four additional study visits to assess treatment effects, including one baseline visit (BL, prior to treatment) and three follow-up visits (FU1, FU2, and FU3, approximately 1 week, 3 weeks, and 3 months after treatment, respectively). Treatment assignment was unblinded after FU3. Participants in the sham group repeated the study with open-label cingulate tDCS during Phase 2. Statistical analysis was limited to data from Phase 1. RESULTS Compared to sham tDCS, cingulate tDCS led to a decrease in Perseverative Errors in Wisconsin Card Sorting Test (WCST), but not Non-Perseverative Errors, as well as a decrease in the ratio score of Trail Making Test-Part B (TMT-B) to TMT-Part A (TMT-A). Seed-to-voxel analysis with resting state functional MRI data revealed an increase in functional connectivity between the bilateral dACC and a cluster in the right dorsal striatum after cingulate tDCS. There were no differences in self-reported discomfort ratings between sham and cingulate tDCS. CONCLUSIONS Cingulate tDCS is safe and well-tolerated in PWH, and may have the potential to improve cognitive performance and brain function. A future study with a larger sample is warranted.
Collapse
Affiliation(s)
- Xiong Jiang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Sophia Dahmani
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Margarita Bronshteyn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Fan Nils Yang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - John Paul Ryan
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - R. Craig Gallagher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Srikanth R. Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Princy N. Kumar
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - David J. Moore
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego, CA, United States of America
| | - Peter E. Turkeltaub
- Department of Neurology and Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
32
|
Le B, Alonzo A, Bull M, Kabourakis M, Martin D, Loo C. A Clinical Case Series of Acute and Maintenance Home Administered Transcranial Direct Current Stimulation in Treatment-Resistant Depression. J ECT 2022; 38:e11-e19. [PMID: 35613011 DOI: 10.1097/yct.0000000000000813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Transcranial direct current stimulation (tDCS) is a noninvasive neurostimulation technique being translated clinically for the treatment of depression. There is limited research documenting the longer-term effectiveness and safety of tDCS treatment. This case series is the first report of remotely supervised, home-administered tDCS (HA-tDCS) for depression in a clinical setting. METHODS We report clinical, cognitive, and safety outcomes from 16 depressed patients who received acute and/or maintenance HA-tDCS. We retrospectively examined clinical data from up to 2.5 years of treatment. Descriptive statistics are reported to document patient outcomes. RESULTS Twelve patients received acute treatment for a current depressive episode and 4 commenced tDCS maintenance therapy after responding to ECT or repetitive transcranial magnetic stimulation (rTMS). The cohort was highly treatment-resistant wherein 15 of 16 patients failed 3 trials or more of antidepressant medication in the current episode, and 6 patients failed to gain significant benefit from prior ECT or rTMS. Five of 12 patients responded to acute tDCS within 6 weeks, and 9 patients who received tDCS for more than 12 weeks maintained improvements over several months. Cognitive tests showed no evidence of impairments in cognitive outcomes after up to 2 years of treatment. Two patients were withdrawn from treatment because of blurred vision or exacerbation of tinnitus. Transcranial direct current stimulation was otherwise safe and well tolerated. CONCLUSIONS Transcranial direct current stimulation given for at least 6 weeks may be of clinical benefit even in treatment-resistant depression. Results provide support for long-term effectiveness, safety, and feasibility of remotely supervised HA-tDCS and suggest a role for maintenance tDCS after acute treatment with tDCS, rTMS, or ECT.
Collapse
Affiliation(s)
- Brandon Le
- From the School of Psychiatry, University of New South Wales/ Black Dog Institute, Randwick, NSW, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Zarate-Guerrero S, Duran JM, Naismith I. How a transdiagnostic approach can improve the treatment of emotional disorders: Insights from clinical psychology and neuroimaging. Clin Psychol Psychother 2022; 29:895-905. [PMID: 34984759 DOI: 10.1002/cpp.2704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
Multiple psychological treatments for emotional disorders have been developed and implemented, improving the quality of life of individuals. Nevertheless, relapse and poor response to psychotherapy are common. This article argues that a greater understanding of both the psychological and neurobiological mechanisms of change in psychotherapy is essential to improve treatment for emotional disorders. It aims to demonstrate how an understanding of these mechanisms provides a basis for (i) reconceptualizing some mental disorders, (ii) refining and establishing the evidence for existing therapeutic techniques and (iii) designing new techniques that precisely target the processes that maintain these disorders. Possible future directions for researchers and practitioners working at the intersection of neuropsychology and clinical psychology are discussed.
Collapse
Affiliation(s)
- Santiago Zarate-Guerrero
- Facultad de Ciencias Sociales y Humanas, Programa Virtual de Psicología, Grupo: Psynergia, Fundación Universitaria del Área Andina, Bogotá, Colombia
- Programa de Psicología, Grupo de investigación: Mente Cerebro y Comportamiento, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Johanna M Duran
- Facultad de Ciencias Sociales y Humanas, Programa de Psicología, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Iona Naismith
- Departamento de Psicología, Universidad de los Andes, Bogota, Colombia
| |
Collapse
|
34
|
Tolerability and feasibility of at-home remotely supervised transcranial direct current stimulation (RS-tDCS): Single-center evidence from 6,779 sessions. Brain Stimul 2022; 15:707-716. [DOI: 10.1016/j.brs.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
|
35
|
Turnbull C, Boomsma A, Milte R, Stanton TR, Hordacre B. Safety and Adverse Events following Non-invasive Electrical Brain Stimulation in Stroke: A Systematic Review. Top Stroke Rehabil 2022; 30:355-367. [PMID: 35353649 DOI: 10.1080/10749357.2022.2058294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Noninvasive electrical stimulation (ES) could have therapeutic potential in stroke recovery. However, there is no comprehensive evaluation of adverse events. This study systematically searched the literature to document frequency and prevalence of adverse events. A secondary aim was to explore associations between adverse events and ES parameters or participant characteristics.Methods: Databases were searched for studies evaluating ES in adults with stroke. All included studies were required to report on adverse events. Extracted data were: (1) study design; (2) adverse events; (3) participant characteristics; (4) ES parameters. RESULTS Seventy-five studies were included. Adverse events were minor in nature. The most frequently reported adverse events were tingling (37.3% of papers), burning (18.7%), headaches (14.7%) and fatigue (14.7%). Cathodal stimulation was associated with greater frequency of itching (p = .02), intensities of 1-2 mA with increased tingling (p = .04) and discomfort (p = .03), and current density <0.4mA/cm2 with greater discomfort (p = .03). Tingling was the most prevalent adverse event (18.1% of participants), with prevalence data not differing between active and control conditions (all p ≥ 0.37). Individual participants were more likely to report adverse events with increasing current density (r = 0.99, p = .001). Two severe adverse events were noted (a seizure and percutaneous endoscopic gastrostomy placement). CONCLUSION ES appears safe in people with stroke as reported adverse events were predominantly minor in nature. An adverse events questionnaire is proposed to enable a more comprehensive and nuanced analysis of the frequency and prevalence of adverse events.
Collapse
Affiliation(s)
- Clare Turnbull
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Aafke Boomsma
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Rachel Milte
- Health and Social Care Economics Group College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Tasha R Stanton
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
36
|
Feasibility of Combining Transcranial Direct Current Stimulation and Active Fully Embodied Virtual Reality for Visual Height Intolerance: A Double-Blind Randomized Controlled Study. J Clin Med 2022; 11:jcm11020345. [PMID: 35054039 PMCID: PMC8779186 DOI: 10.3390/jcm11020345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) and Virtual Reality Exposure Therapy (VRET) are individually increasingly used in psychiatric research. OBJECTIVE/HYPOTHESIS Our study aimed to investigate the feasibility of combining tDCS and wireless 360° full immersive active and embodied VRET to reduce height-induced anxiety. METHODS We carried out a pilot randomized, double-blind, controlled study associating VRET (two 20 min sessions with a 48 h interval, during which, participants had to cross a plank at rising heights in a building in construction) with online tDCS (targeting the ventromedial prefrontal cortex) in 28 participants. The primary outcomes were the sense of presence level and the tolerability. The secondary outcomes were the anxiety level (Subjective Unit of Discomfort) and the salivary cortisol concentration. RESULTS We confirmed the feasibility of the association between tDCS and fully embodied VRET associated with a good sense of presence without noticeable adverse effects. In both groups, a significant reduction in the fear of height was observed after two sessions, with only a small effect size of add-on tDCS (0.1) according to the SUD. The variations of cortisol concentration differed in the tDCS and sham groups. CONCLUSION Our study confirmed the feasibility of the association between wireless online tDCS and active, fully embodied VRET. The optimal tDCS paradigm remains to be determined in this context to increase effect size and then adequately power future clinical studies assessing synergies between both techniques.
Collapse
|
37
|
Cho H, Razza LB, Borrione L, Bikson M, Charvet L, Dennis-Tiwary TA, Brunoni AR, Sudbrack-Oliveira P. Transcranial Electrical Stimulation for Psychiatric Disorders in Adults: A Primer. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:19-31. [PMID: 35746931 PMCID: PMC9063596 DOI: 10.1176/appi.focus.20210020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial electrical stimulation (tES) comprises noninvasive neuromodulation techniques that deliver low-amplitude electrical currents to targeted brain regions with the goal of modifying neural activities. Expanding evidence from the past decade, specifically using transcranial direct current simulation and transcranial alternating current stimulation, presents promising applications of tES as a treatment for psychiatric disorders. In this review, the authors discuss the basic technical aspects and mechanisms of action of tES in the context of clinical research and practice and review available evidence for its clinical use, efficacy, and safety. They also review recent advancements in use of tES for the treatment of depressive disorders, schizophrenia, substance use disorders, and obsessive-compulsive disorder. Findings largely support growing evidence for the safety and efficacy of tES in the treatment of patients with resistance to existing treatment options, particularly demonstrating promising treatment outcomes for depressive disorders. Future directions of tES research for optimal application in clinical settings are discussed, including the growing home-based, patient-friendly methods and the potential pairing with existing pharmacological or psychotherapeutic treatments for enhanced outcomes. Finally, neuroimaging advancements may provide more specific mapping of brain networks, aiming at more precise tES therapeutic targeting in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Hyein Cho
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lais B Razza
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lucas Borrione
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Marom Bikson
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Leigh Charvet
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Tracy A Dennis-Tiwary
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Andre R Brunoni
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Pedro Sudbrack-Oliveira
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| |
Collapse
|
38
|
Liu CS, Herrmann N, Song BX, Ba J, Gallagher D, Oh PI, Marzolini S, Rajji TK, Charles J, Papneja P, Rapoport MJ, Andreazza AC, Vieira D, Kiss A, Lanctôt KL. Exercise priming with transcranial direct current stimulation: a study protocol for a randomized, parallel-design, sham-controlled trial in mild cognitive impairment and Alzheimer's disease. BMC Geriatr 2021; 21:677. [PMID: 34863115 PMCID: PMC8645072 DOI: 10.1186/s12877-021-02636-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive type of brain stimulation that uses electrical currents to modulate neuronal activity. A small number of studies have investigated the effects of tDCS on cognition in patients with Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD), and have demonstrated variable effects. Emerging evidence suggests that tDCS is most effective when applied to active brain circuits. Aerobic exercise is known to increase cortical excitability and improve brain network connectivity. Exercise may therefore be an effective, yet previously unexplored primer for tDCS to improve cognition in MCI and mild AD. Methods Participants with MCI or AD will be randomized to receive 10 sessions over 2 weeks of either exercise primed tDCS, exercise primed sham tDCS, or tDCS alone in a blinded, parallel-design trial. Those randomized to an exercise intervention will receive individualized 30-min aerobic exercise prescriptions to achieve a moderate-intensity dosage, equivalent to the ventilatory anaerobic threshold determined by cardiopulmonary assessment, to sufficiently increase cortical excitability. The tDCS protocol consists of 20 min sessions at 2 mA, 5 times per week for 2 weeks applied through 35 cm2 bitemporal electrodes. Our primary aim is to assess the efficacy of exercise primed tDCS for improving global cognition using the Montreal Cognitive Assessment (MoCA). Our secondary aims are to evaluate the efficacy of exercise primed tDCS for improving specific cognitive domains using various cognitive tests (n-back, Word Recall and Word Recognition Tasks from the Alzheimer’s Disease Assessment Scale-Cognitive subscale) and neuropsychiatric symptoms (Neuropsychiatric Inventory). We will also explore whether exercise primed tDCS is associated with an increase in markers of neurogenesis, oxidative stress and angiogenesis, and if changes in these markers are correlated with cognitive improvement. Discussion We describe a novel clinical trial to investigate the effects of exercise priming before tDCS in patients with MCI or mild AD. This proof-of-concept study may identify a previously unexplored, non-invasive, non-pharmacological combination intervention that improves cognitive symptoms in patients. Findings from this study may also identify potential mechanistic actions of tDCS in MCI and mild AD. Trial registration Clinicaltrials.gov, NCT03670615. Registered on September 13, 2018.
Collapse
Affiliation(s)
- Celina S Liu
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Bing Xin Song
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Joycelyn Ba
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Paul I Oh
- Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada
| | - Susan Marzolini
- Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction & Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Charles
- Family & Community Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Purti Papneja
- Family & Community Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mark J Rapoport
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada
| | - Danielle Vieira
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Alex Kiss
- Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada. .,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada. .,Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada.
| |
Collapse
|
39
|
Luo WY, Liu H, Feng Y, Hao JX, Zhang YJ, Peng WF, Zhang PM, Ding J, Wang X. Efficacy of cathodal transcranial direct current stimulation on electroencephalographic functional networks in patients with focal epilepsy: Preliminary findings. Epilepsy Res 2021; 178:106791. [PMID: 34837824 DOI: 10.1016/j.eplepsyres.2021.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromodulation is a promising therapeutic alternative for epilepsy. We aimed to explore the efficacy and safety of cathodal transcranial current direct stimulation (ctDCS) on electroencephalographic functional networks in focal epilepsy. METHODS A sham-controlled, double-blinded, randomized study was conducted on 25 participants with focal epilepsy who underwent a 5-day, -1.0 mA, 20 min ctDCS, which targeted at the most active interictal epileptiform discharge (IED) region. We examined the electroencephalograms (EEGs) at baseline, immediately and at 4 weeks following ctDCS. The graph theory-based brain networks were established through time-variant partial directed coherence (TVPDC), and were calculated between each pair of EEG signals. The functional networks were characterized using average clustering coefficient, characteristic path length, and small-worldness index. The seizure frequencies, IEDs, graph-theory metrics and cognitive tests were compared. RESULTS Preliminary findings indicated an IED reduction of 30.2% at the end of 5-day active ctDCS compared to baseline (p < 0.10) and a significant IED reduction of 33.4% 4 weeks later (p < 0.05). In terms of the EEG functional network, the small-worldness index significantly reduced by 3.5% (p < 0.05) and the characteristic path length increased by 1.8% (p < 0.10) at the end of the session compared to the baseline. No obvious change was found in the seizure frequency during follow-up (p > 0.05). The Mini-Mental State Examination (MMSE) showed no difference between the active and sham groups (p > 0.05). No severe adverse reactions were observed. CONCLUSIONS In focal epilepsy, the 5-day consecutive ctDCS may potentially decrease the IEDs and ameliorate the EEG functional network, proposing a novel personalized therapeutic scenario for epilepsy.
Collapse
Affiliation(s)
- Wen-Yi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Feng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Xin Hao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Jun Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Feng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Offline tDCS modulates prefrontal-cortical-subcortical-cerebellar fear pathways in delayed fear extinction. Exp Brain Res 2021; 240:221-235. [PMID: 34694466 DOI: 10.1007/s00221-021-06248-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been studied to enhance extinction-based treatments for anxiety disorders. However, the field shows conflicting results about its anxiolytic effect and only a few studies have observed the extinction of consolidated memories. We looked to study the effect of offline 1 mA tDCS over the right dorsolateral pre-frontal cortex across the fear pathways, in consolidated fear response during delayed extinction. Participants (N = 34 women) underwent in a two-day fear conditioning procedure. On day 1, participants were assigned to the control group (N = 18) or the tDCS group (N = 16) and went through a fear acquisition procedure. On day 2, the tDCS group received 20 min tDCS before extinction and while inside the MRI scanner. The control group completed the extinction procedure only. The tDCS session (for the tDCS group) and the fMRI scan (for both groups) were completed just on the second day. Univariate fMRI analysis showed stimulation-dependent activity during late extinction with the tDCS group showing decreased neural activity during the processing of threat cues (CS +) and increased activity during the processing of safety cues (CS -), in prefrontal, postcentral and paracentral regions, during late extinction. ROI to whole-brain psychophysiological interaction (PPI) analysis showed the tDCS effect on the connectivity between the left dorsolateral prefrontal cortex three cortical-amygdalo-hippocampal-cerebellar pathway clusters during the processing of the CS + in late extinction (TFCE corrected; p < 0.05). Increased neuronal activity during the processing of safety cues and stronger coupling during the processing of threat cues might be the mechanisms by which tDCS contributes to stimuli discrimination.
Collapse
|
41
|
Dai W, Geng Y, Liu H, Guo C, Chen W, Ma J, Chen J, Jia Y, Shen Y, Wang T. Preconditioning with Cathodal High-Definition Transcranial Direct Current Stimulation Sensitizes the Primary Motor Cortex to Subsequent Intermittent Theta Burst Stimulation. Neural Plast 2021; 2021:8966584. [PMID: 34721571 PMCID: PMC8553444 DOI: 10.1155/2021/8966584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.
Collapse
Affiliation(s)
- Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Geng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Liu
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Chuan Guo
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxiang Chen
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jinjin Chen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbing Jia
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Herrera-Melendez AL, Bajbouj M, Aust S. Application of Transcranial Direct Current Stimulation in Psychiatry. Neuropsychobiology 2021; 79:372-383. [PMID: 31340213 DOI: 10.1159/000501227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique, which noninvasively alters cortical excitability via weak polarizing currents between two electrodes placed on the scalp. Since it is comparably easy to handle, cheap to use and relatively well tolerated, tDCS has gained increasing interest in recent years. Based on well-known behavioral effects, a number of clinical studies have been performed in populations including patients with major depressive disorder followed by schizophrenia and substance use disorders, in sum with heterogeneous results with respect to efficacy. Nevertheless, the potential of tDCS must not be underestimated since it could be further improved by systematically investigating the various stimulation parameters to eventually increase clinical efficacy. The present article briefly explains the underlying physiology of tDCS, summarizes typical stimulation protocols and then reviews clinical efficacy for various psychiatric disorders as well as prevalent adverse effects. Future developments include combined and more complex interactions of tDCS with pharmacological or psychotherapeutic interventions. In particular, using computational models to individualize stimulation protocols, considering state dependency and applying closed-loop technologies will pave the way for tDCS-based personalized interventions as well as the development of home treatment settings promoting the role of tDCS as an effective treatment option for patients with mental health problems.
Collapse
Affiliation(s)
- Ana-Lucia Herrera-Melendez
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Small Enhancement of Bimanual Typing Performance after 20 Sessions of tDCS in Healthy Young Adults. Neuroscience 2021; 466:26-35. [PMID: 33974964 DOI: 10.1016/j.neuroscience.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex (M1) would enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. Healthy young adults (n = 60) were semi-randomly assigned to three groups: the tDCS group (n = 20) received anodal tDCS over M1; the SHAM group (n = 20) received sham tDCS, both while performing a typing task; and the Control group (CON, n = 20) only performed the typing task. Typing speed and errors at maximum (mTT) and submaximal (iTT) speeds were measured before training, and after 10 and 20 sessions of tDCS. Every subject increased maximum typing speed after 10 and 20 tDCS sessions, with no significant differences (p > 0.05) between the groups. The number of errors at submaximal rates decreased significantly (p < 0.05) by 4% after 10 tDCS sessions compared with the 3% increase in the SHAM and the 2% increase in the CON groups. Between the 10th and 20th tDCS sessions, the number of typing errors increased significantly in all groups. While anodal tDCS reduced typing errors marginally, such performance-enhancing effects plateaued after 10 sessions without any further improvements in typing speed. These findings suggest that long-term tDCS may not have functionally relevant effects on healthy young adults' typing performance.
Collapse
|
44
|
Cai G, Xia Z, Charvet L, Xiao F, Datta A, Androulakis XM. A Systematic Review and Meta-Analysis on the Efficacy of Repeated Transcranial Direct Current Stimulation for Migraine. J Pain Res 2021; 14:1171-1183. [PMID: 33953607 PMCID: PMC8090858 DOI: 10.2147/jpr.s295704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Transcranial direct current stimulation (tDCS) may have therapeutic potential in the management of migraine. However, studies to date have yielded conflicting results. We reviewed studies using repeated tDCS for longer than 4 weeks in migraine treatment, and performed meta-analysis on the efficacy of tDCS in migraine. Methods In this meta-analysis, we included the common outcome measurements reported across randomized controlled trials (RCTs). Subgroup analysis was performed at different post-treatment endpoints, and with different stimulation intensities and polarities. Results Five RCTs were included in the quantitative meta-analysis with a total of 104 migraine patients. We found a significant reduction of migraine pain intensity (MD: −1.44; CI: [−2.13, −0.76]) in active vs sham tDCS treated patients. Within active treatment groups, pain intensity and duration were significantly improved from baseline after tDCS treatment (intensity MD: −1.86; CI: [−3.30, −0.43]; duration MD: −4.42; CI: [−8.11, −0.74]) and during a follow-up period (intensity MD: −1.52; CI: [−1.84, −1.20]; duration MD: −1.94; CI: [−3.10, −0.77]). There was a significant reduction of pain intensity by both anodal (MD: −1.74; CI: [−2.80, −0.68]) and cathodal (MD: −1.49; CI: [−1.89, −1.09]) stimulation conditions. Conclusion tDCS treatment repeated over days for a period of 4 weeks or more is effective in reducing migraine pain intensity and duration of migraine episode. The benefit of tDCS can persist for at least 4 weeks after the completion of last tDCS session. Both anodal and cathodal stimulation are effective for reducing migraine pain intensity.
Collapse
Affiliation(s)
- Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhu Xia
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, NY, USA.,Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - X Michelle Androulakis
- Neurology, Columbia VA Health System, Columbia, SC, USA.,School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
45
|
Ko MH. Safety of Transcranial Direct Current Stimulation in Neurorehabilitation. BRAIN & NEUROREHABILITATION 2021; 14:e9. [PMID: 36742105 PMCID: PMC9879413 DOI: 10.12786/bn.2021.14.e9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has considerable potential as a useful method in the field of neurorehabilitation. However, the safety of tDCS for the human is primarily based on theoretical evidence related to electricity, and the safety information of applying tDCS to the human is only available from researcher's reporting. Based on tDCS studies with human and animal subjects and simulation-based studies of the safety of current stimulation in the past 20 years, this review investigated the safety of tDCS application to the human body. No severe complications have been reported in either adults or children for tDCS at an intensity of 4 mA or less, within a period of 60 minutes per day, using commonly applied 25 or 35 cm2 electrodes. According to animal studies, the amount of electricity used for tDCS is less than 5% of the amount that permanently changes brain tissue, thereby ensuring safety to a certain extent. In order to increase the efficacy of tDCS for neurorehabilitation and to minimize even trivial complications in the human screening of exclusion criteria should be conducted with detailed observations of complications.
Collapse
Affiliation(s)
- Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
46
|
Gibson BC, Heinrich M, Mullins TS, Yu AB, Hansberger JT, Clark VP. Baseline Differences in Anxiety Affect Attention and tDCS-Mediated Learning. Front Hum Neurosci 2021; 15:541369. [PMID: 33746721 PMCID: PMC7965943 DOI: 10.3389/fnhum.2021.541369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022] Open
Abstract
Variable responses to transcranial direct current stimulation (tDCS) protocols across individuals are widely reported, but the reasons behind this variation are unclear. This includes tDCS protocols meant to improve attention. Attentional control is impacted by top-down and bottom-up processes, and this relationship is affected by state characteristics such as anxiety. According to Attentional Control Theory, anxiety biases attention towards bottom-up and stimulus-driven processing. The goal of this study was to explore the extent to which differences in state anxiety and related measures affect visual attention and category learning, both with and without the influence of tDCS. Using discovery learning, participants were trained to classify pictures of European streets into two categories while receiving 30 min of 2.0 mA anodal, cathodal, or sham tDCS over the rVLPFC. The pictures were classifiable according to two separate rules, one stimulus and one hypothesis-driven. The Remote Associates Test (RAT), Profile of Mood States, and Attention Networks Task (ANT) were used to understand the effects of individual differences at baseline on subsequent tDCS-mediated learning. Multinomial logistic regression was fit to predict rule learning based on the baseline measures, with subjects classified according to whether they used the stimulus-driven or hypothesis-driven rule to classify the pictures. The overall model showed a classification accuracy of 74.1%. The type of tDCS stimulation applied, attentional orienting score, and self-reported mood were significant predictors of different categories of rule learning. These results indicate that anxiety can influence the quality of subjects' attention at the onset of the task and that these attentional differences can influence tDCS-mediated category learning during the rapid assessment of visual scenes. These findings have implications for understanding the complex interactions that give rise to the variability in response to tDCS.
Collapse
Affiliation(s)
- Benjamin C. Gibson
- Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM, United States
- The Mind Research Network of the Lovelace Biomedical Research Institute, University of New Mexico, Albuquerque, NM, United States
| | - Melissa Heinrich
- Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM, United States
| | - Teagan S. Mullins
- Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM, United States
| | - Alfred B. Yu
- DEVCOM Army Research Laboratory, Human Research, and Engineering Directorate, Aberdeen Proving Ground, MD, United States
| | - Jeffrey T. Hansberger
- DEVCOM Army Research Laboratory, Human Research, and Engineering Directorate, Aberdeen Proving Ground, MD, United States
| | - Vincent P. Clark
- Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM, United States
- The Mind Research Network of the Lovelace Biomedical Research Institute, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
47
|
Smits FM, de Kort GJ, Geuze E. Acceptability of tDCS in treating stress-related mental health disorders: a mixed methods study among military patients and caregivers. BMC Psychiatry 2021; 21:97. [PMID: 33588798 PMCID: PMC7883955 DOI: 10.1186/s12888-021-03086-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Noninvasive brain stimulation techniques like transcranial direct current stimulation (tDCS) offer potential new approaches to treat stress-related mental health disorders. While the acceptability of tDCS as a treatment tool plays a crucial role in its development and implementation, little is known about tDCS acceptability for users in mental healthcare, especially in the context of stress-related disorders. METHODS Using a mixed-methods approach, we investigated tDCS acceptability among 102 active duty and post-active military patients with stress-related symptoms (posttraumatic stress disorder, anxiety and impulsive aggression) who participated in a 5-session tDCS intervention. Quantitative dropout and adverse effects data was collected for all patients involved in the sham-controlled tDCS intervention. We additionally explored perspectives on the acceptability of tDCS treatment via a theory-based semi-structured interview. A subgroup of patients as well as their caregivers were interviewed to include the views of both patients and mental healthcare professionals. RESULTS Quantitative outcomes showed minimal tDCS-related adverse effects (mild itching or burning sensations on the scalp) and high tDCS treatment adherence (dropout rate: 4% for active tDCS, 0% for sham). The qualitative outcomes showed predominantly positive attitudes towards tDCS interventions for stress-related disorders, but only as complementary to psychotherapy. Remarkably, despite the perception that sufficient explanation was provided, patients and caregivers stressed that tDCS treatment comprehension was limited and should improve. Also, the travel associated with frequent on-site tDCS sessions may produce a significant barrier to care for patients with stress-related disorders and active-duty military personnel. CONCLUSIONS Acceptability numbers and perspectives from military patients and caregivers suggest that tDCS is an acceptable complementary tool in the treatment of stress-related disorders. Critically, however, if tDCS is to be used beyond scientific studies, adequately educating users on tDCS working mechanisms is vital to further improve its acceptability. Also, the perceived potential barrier to care due to frequent travel may favor home-based tDCS solutions. TRIAL REGISTRATION The tDCS intervention was part of a sham-controlled trial registered on 05-18-2016 at the Netherlands Trial Register with ID NL5709 .
Collapse
Affiliation(s)
- Fenne M. Smits
- grid.462591.dBrain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Guido J. de Kort
- grid.462591.dBrain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ Utrecht, The Netherlands
| | - Elbert Geuze
- grid.462591.dBrain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
48
|
Buchanan DM, Bogdanowicz T, Khanna N, Lockman-Dufour G, Robaey P, D’Angiulli A. Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents. Brain Sci 2021; 11:212. [PMID: 33578648 PMCID: PMC7916366 DOI: 10.3390/brainsci11020212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a safe, tolerable, and acceptable technique in adults. However, there is limited evidence for its safety in youth. Although limited, there are a handful of important empirical articles that have evaluated safety and tolerability outcomes in youth. However, a synthesis of pediatric safety studies is not currently available. OBJECTIVE To synthesize objective evidence regarding the safety and tolerability of pediatric tDCS based on the current state of the literature. METHODS Our search and report used PRISMA guidelines. Our method systematically examined investigations purposefully designed to evaluate the safety, tolerability, and acceptability of tDCS in healthy and atypical youth that were submitted to three databases, from the beginning of the database to November 2019. Safety considerations were evaluated by studies utilizing neuroimaging, physiological changes, performance on tasks, and by analyzing reported and objective side effects; tolerability via rate of adverse events; and acceptability via rate of dropouts. RESULTS We report on 203 sham sessions, 864 active sessions up to 2 mA, and 303 active hours of stimulation in 156 children. A total of 4.4% of the active sessions were in neurotypical controls, with the other 95.6% in clinical subjects. CONCLUSION In spite of the fact that the current evidence is sporadic and scarce, the presently reviewed literature provides support for the safety, tolerability, and acceptability, of tDCS in youth for 1-20 sessions of 20 min up to 2 mA. Future pediatric tDCS research is encouraged.
Collapse
Affiliation(s)
- Derrick Matthew Buchanan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuroscience of Imagination Cognition Emotion Research Lab, Carleton University, Ottawa, ON K1S 5B6, Canada
- Neuropsychiatric Lab, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Thomas Bogdanowicz
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuroscience of Imagination Cognition Emotion Research Lab, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Neha Khanna
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuroscience of Imagination Cognition Emotion Research Lab, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Guillaume Lockman-Dufour
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuroscience of Imagination Cognition Emotion Research Lab, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Philippe Robaey
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuropsychiatric Lab, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (T.B.); (N.K.); (G.L.-D.); (P.R.); (A.D.)
- Neuroscience of Imagination Cognition Emotion Research Lab, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
49
|
Schommartz I, Dix A, Passow S, Li SC. Functional Effects of Bilateral Dorsolateral Prefrontal Cortex Modulation During Sequential Decision-Making: A Functional Near-Infrared Spectroscopy Study With Offline Transcranial Direct Current Stimulation. Front Hum Neurosci 2021; 14:605190. [PMID: 33613203 PMCID: PMC7886709 DOI: 10.3389/fnhum.2020.605190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The ability to learn sequential contingencies of actions for predicting future outcomes is indispensable for flexible behavior in many daily decision-making contexts. It remains open whether such ability may be enhanced by transcranial direct current stimulation (tDCS). The present study combined tDCS with functional near-infrared spectroscopy (fNIRS) to investigate potential tDCS-induced effects on sequential decision-making and the neural mechanisms underlying such modulations. Offline tDCS and sham stimulation were applied over the left and right dorsolateral prefrontal cortex (dlPFC) in young male adults (N = 29, mean age = 23.4 years, SD = 3.2) in a double-blind between-subject design using a three-state Markov decision task. The results showed (i) an enhanced dlPFC hemodynamic response during the acquisition of sequential state transitions that is consistent with the findings from a previous functional magnetic resonance imaging (fMRI) study; (ii) a tDCS-induced increase of the hemodynamic response in the dlPFC, but without accompanying performance-enhancing effects at the behavioral level; and (iii) a greater tDCS-induced upregulation of hemodynamic responses in the delayed reward condition that seems to be associated with faster decision speed. Taken together, these findings provide empirical evidence for fNIRS as a suitable method for investigating hemodynamic correlates of sequential decision-making as well as functional brain correlates underlying tDCS-induced modulation. Future research with larger sample sizes for carrying out subgroup analysis is necessary in order to decipher interindividual differences in tDCS-induced effects on sequential decision-making process at the behavioral and brain levels.
Collapse
Affiliation(s)
- Iryna Schommartz
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Developmental Psychology, Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
50
|
Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. PROGRESS IN BRAIN RESEARCH 2021; 264:1-40. [PMID: 34167652 DOI: 10.1016/bs.pbr.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been highlighted as a powerful tool to promote neuroplasticity, and an attractive approach to support cognitive remediation. Here we provide a systematic review of 26 papers using NIBS to ameliorate cognitive dysfunctions in three prevalent neurodevelopmental disorders: Attention-Deficit/Hyperactivity Disorder (ADHD), Developmental Dyslexia and Developmental Dyscalculia. An overview of the state of research shows a predominance of studies using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) techniques, and an unequal distribution among clinical conditions. Regarding the utility of NIBS, the results are promising but also ambiguous. Twenty-three papers reported beneficial effects, but many of these effects were found only once or were only partially replicated and some studies even reported detrimental effects. Furthermore, most studies differed in at least one core aspect, the NIBS applied, the questionnaires and cognitive tests conducted, or the age group investigated, and sample sizes were mostly small. Hence, further studies are needed to rigorously examine the potential of NIBS in the remediation of cognitive functions. Finally, we discuss potential caveats and future directions. We reason that if adequately addressing these challenges NIBS can be feasible, with potential benefits in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Flavia H Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Deny Menghini
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|