1
|
Savelon ECJ, Jordan HT, Stinear CM, Byblow WD. Noninvasive brain stimulation to improve motor outcomes after stroke. Curr Opin Neurol 2024; 37:621-628. [PMID: 39221935 DOI: 10.1097/wco.0000000000001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights recent developments in noninvasive brain stimulation (NIBS) techniques and applications for improving motor outcomes after stroke. Two promising areas of development relate to deep brain neuromodulation and the use of single-pulse transcranial magnetic stimulation (TMS) within a prediction tool for predicting upper limb outcome for individual patients. RECENT FINDINGS Systematic reviews highlight the inconsistent effect sizes of interventional NIBS for motor outcome after stroke, as well as limited evidence supporting the interhemispheric competition model. To improve the therapeutic efficacy of NIBS, studies have leveraged metaplasticity and priming approaches. Transcranial temporal interference stimulation (tTIS) and low-intensity focused ultrasound stimulation (LIFUS) are emerging NIBS techniques with potential for modulating deeper brain structures, which may hold promise for stroke neurorehabilitation. Additionally, motor evoked potential (MEP) status obtained with single-pulse TMS is a prognostic biomarker that could be used to tailor NIBS for individual patients. SUMMARY Trials of interventional NIBS to improve stroke outcomes may be improved by applying NIBS in a more targeted manner. This could be achieved by taking advantage of NIBS techniques that can be targeted to deeper brain structures, using biomarkers of structural and functional reserve to stratify patients, and recruiting patients in more homogeneous time windows.
Collapse
Affiliation(s)
| | - Harry T Jordan
- Department of Exercise Sciences
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Centre for Brain Research
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
2
|
Zhang L, Wang J, Zhou H, Liao W, Wang N, Yu X. The effect of body weight-supported Tai Chi Yunshou on upper limb motor function in stroke survivors based on neurobiomechanical analysis: a four-arm, parallel-group, assessors-blind randomized controlled trial protocol. Front Neurol 2024; 15:1395164. [PMID: 39045430 PMCID: PMC11263172 DOI: 10.3389/fneur.2024.1395164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction A series of functional disorders commonly occur after stroke, of which upper limb dysfunction is the most difficult to recover. The upper limb rehabilitation effect of Tai Chi Yunshou(TCY) in the later stage of stroke has been confirmed by research. Body weight support-Tai Chi Yunshou (BWS-TCY) is based on TCY exercise and robotic exoskeletons offers most flexibility in deweighting and control strategy. This study is aimed to explore the effect of BWS-TCY on upper limb motor function in stroke based on neurobiomechanics. Methods and analysis A single-blind randomized controlled trial will be conducted on 36 stroke survivors who will be randomly assigned to three groups: experimental group, control group A and control group B. In addition, 12 healthy elderly people will be recruited into the healthy control group. Those in the experimental group will receive 20 min of CRT and 20 min of BWS-TCY training, while participants in the control group A will receive 20 min of CRT and 20 min of Robot-assisted training. Participants in the control group B will undergo 40 min of Conventional rehabilitation training (CRT) daily. All interventions will take place 5 days a week for 12 weeks, with a 12-week follow-up period. No intervention will be carried out for the healthy control group. Upper limb function will be assessed before and after the intervention using various rating scales (Fugl-Meyer Assessment, Wolf Motor Function Test, etc.), as well as neurobiomechanical analyses (surface electromyography, functional near-infrared brain function analysis system, and Xsens maneuver Capture System). Additionally, 10 healthy elderly individuals will be recruited for neurobiomechanical analysis, and the results will be compared with those of stroke survivors. Discussion The results of this study will offer initial evidence on the effectiveness and feasibility of BWS-TCY as an early intervention for stroke rehabilitation. Positive findings from this study could contribute to the development of guidelines for the use of BWS-TCY in the early stages of stroke. Ethics and dissemination This study has been approved by the Research Ethics Committees of the seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (Study ID: 2022-7th-HIRB-022). The results of the study will be published in a peer-reviewed journal and presented at scientific conferences. Clinical trial registration https://clinicaltrials.gov/, ChiCTR 2200063150.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Fujian Provincial Governmental Hospital, Fujian, China
| | - Jiening Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanxia Zhou
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wangsheng Liao
- Department of Rehabilitation, Fuzhou Second General Hospital, Fujian, China
| | - Naizhen Wang
- Department of Rehabilitation, Fuzhou Second General Hospital, Fujian, China
| | - Xiaoming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Cheng JL, Tan C, Liu HY, Han DM, Liu ZC. Past, present, and future of deep transcranial magnetic stimulation: A review in psychiatric and neurological disorders. World J Psychiatry 2023; 13:607-619. [PMID: 37771645 PMCID: PMC10523198 DOI: 10.5498/wjp.v13.i9.607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Deep transcranial magnetic stimulation (DTMS) is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation tech-nology. The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders. This is due to its deep stimulation site and wide range of action. This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson's disease, Alzheimer's disease, post-stroke motor dysfunction, aphasia, and other neurological disorders, as well as anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Jin-Ling Cheng
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Cheng Tan
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Hui-Yu Liu
- Department of Infectious Diseases, Yuebei Second People’s Hospital, Shaoguan 512026, Guangdong Province, China
| | - Dong-Miao Han
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou 341000, Jiangxi Province, China
| | - Zi-Cai Liu
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
4
|
Leocani L, Dalla Costa G, Coppi E, Santangelo R, Pisa M, Ferrari L, Bernasconi MP, Falautano M, Zangen A, Magnani G, Comi G. Repetitive Transcranial Magnetic Stimulation With H-Coil in Alzheimer's Disease: A Double-Blind, Placebo-Controlled Pilot Study. Front Neurol 2021; 11:614351. [PMID: 33679572 PMCID: PMC7930223 DOI: 10.3389/fneur.2020.614351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Focal repetitive transcranial magnetic stimulation (rTMS) has been applied to improve cognition in Alzheimer's disease (AD) with conflicting results. We applied rTMS in AD in a pilot placebo-controlled study using the H2-coil. H-coils are suitable for targeting wider neuronal structures compared with standard focal coils, in particular the H2-coil stimulates simultaneously the frontal-parietal-temporal lobes bilaterally. Thirty patients (mean age 70.9 year, SD 8.1; mean MMSE score 16.9, SD 5.5) were randomized to sham or real 10 Hz rTMS stimulation with the H2-coil. Each patient underwent 3 sessions/week for 4 weeks, followed by 4 weeks with maintenance treatment (1 session/week). Primary outcome was improvement of ADAS-cog at 4 and 8 weeks compared with baseline. A trend toward an improved ADAS-cog score over time was observed for patients undergoing real rTMS, with actively treated patients experiencing a mean decrease of −1.01 points at the ADAS-Cog scale score per time point (95% CIs −0.02 to −3.13, p < 0.04). This trend was no longer evident 2 months after the end of treatment. Real rTMS showed no significant effect on MMSE and BDI changes over time. These preliminary findings suggest that rTMS with H-coil is feasible and safe in patients with probable AD and might provide beneficial, even though transient, effects on cognition. This study prompts larger studies in the early stages of AD, combining rTMS and cognitive rehabilitation. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT04562506.
Collapse
Affiliation(s)
- Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Elisabetta Coppi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Santangelo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Ferrari
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | | | - Monica Falautano
- Neuropsychology and Clinical Psychology Service, Hospital San Raffaele, Milan, Italy
| | - Abraham Zangen
- Neuroscience Laboratory, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Giuseppe Magnani
- Memory Disorders Unit, Institute of Experimental Neurology-INSPE, Hospital San Raffaele, Milan, Italy
| | - Giancarlo Comi
- University Vita-Salute San Raffaele, Milan, Italy.,Institute of Experimental Neurology-INSPE, Hospital San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Chieffo R, Giatsidis F, Santangelo R, Alyagon U, Comola M, Zangen A, Comi G, Leocani L. Repetitive Transcranial Magnetic Stimulation With H-Coil Coupled With Cycling for Improving Lower Limb Motor Function After Stroke: An Exploratory Study. Neuromodulation 2020; 24:916-922. [PMID: 32725960 DOI: 10.1111/ner.13228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND/OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has been recognized as a promising intervention for the treatment of post-stroke motor deficits. Here, we explore safety, feasibility, and potential effectiveness of high-frequency rTMS (HF-rTMS) delivered with the Hesed coil (H-coil) during active cycling on paretic lower extremity (LE) motor function in chronic stroke. MATERIALS AND METHODS Twelve subjects with a first-ever stroke were recruited in this double-blind, placebo controlled, crossover study. Eleven sessions of HF-rTMS (40 2s-trains of 20 Hz at 90% resting leg motor threshold) were delivered over the LE motor areas using the H-coil during active cycling for three weeks. Each subject underwent both real and sham rTMS treatments separated by a four-week washout period, in a random sequence. Vital signs were recorded before and after each rTMS session. Any discomfort related to stimulation and side effects were recorded. LE function was also evaluated with Fugl-Meyer assessment (FMA-LE), spasticity was assessed with modified-Ashworth scale and measures of gait speed and endurance (10-meter and 6-min walk tests, respectively) were recorded. RESULTS No participant reported serious adverse effects. During real rTMS, 4 of 12 subjects reported mild side effects including transitory dizziness and muscle twitches on shoulder, so that intensity of stimulation initially set at 90% of RMT was reduced to 80% of RMT on average in these four subjects. Only real treatment was associated with a significant and sustained improvement in FMA-LL (67% responders vs. 9% of the sham). Spasticity significantly ameliorated only after the real rTMS. Real treatment did not offer advantages on walking timed measures when compared with sham. CONCLUSIONS This exploratory study suggests that bilateral HF-rTMS combined with cycling is safe and potentially effective in ameliorating paretic LE motor function and spasticity, rather than gait speed or endurance, in chronic stroke.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Neurorehabilitation Department, Hospital San Raffaele, Milan, Italy.,Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, Hospital San Raffaele, Milan, Italy
| | | | - Roberto Santangelo
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Uri Alyagon
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Mauro Comola
- Neurorehabilitation Department, Hospital San Raffaele, Milan, Italy
| | - Abraham Zangen
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Giancarlo Comi
- Neurorehabilitation Department, Hospital San Raffaele, Milan, Italy.,Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Letizia Leocani
- Neurorehabilitation Department, Hospital San Raffaele, Milan, Italy.,Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, Hospital San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Nuara A, Avanzini P, Rizzolatti G, Fabbri-Destro M. Efficacy of a home-based platform for child-to-child interaction on hand motor function in unilateral cerebral palsy. Dev Med Child Neurol 2019; 61:1314-1322. [PMID: 31115046 DOI: 10.1111/dmcn.14262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
AIM To evaluate the feasibility and effectiveness of an action observation treatment (AOT) home-based platform promoting child-to-child interaction to improve hand motor function in unilateral cerebral palsy (CP). METHOD Twenty children (14 males, six females; mean age 6y 7mo, standard deviation 1y 7mo; range 5y 1mo-10y 6mo) with unilateral CP underwent 20 sessions where they had to observe and then imitate a wizard performing dexterity-demanding magic tricks; a child-to-child live video-session to practise the same exercise then took place. We assessed hand-motor skills with the Besta Scale, neurological motor impairment with Fugl-Meyer Assessment for upper extremity, as well as spasticity, muscle strength, visual analogue scale, and global impression of change 1-month before (T-1), at baseline (T0), and at the end of treatment (T1). RESULTS We observed a T0 to T1 improvement in global hand-motor and bimanual skills, and a significant correlation between motor improvement and difference in hand motor skills relative to the peer (r=-0.519). INTERPRETATION AOT associated with child-to-child interaction effectively improves hand motor function in unilateral CP. This improvement is linked to differences in hand motor ability among peers, suggesting that children should observe others with superior motor skills to their own. This study extends traditional AOT toward novel socially-enriched scenarios, where children might simultaneously be recipients and leaders within a motor learning process. WHAT THIS PAPER ADDS Home-based action observation treatment (AOT) based on child-to-child interaction improves hand motor function in children with unilateral cerebral palsy. Interaction with a more capable peer increases the chances of positive outcome in child-to-child AOT.
Collapse
Affiliation(s)
- Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy.,Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | | |
Collapse
|