1
|
Memudu AE, Olukade BA, Nwanama KE, Alex GS. Models developed to explain the effects of stress on brain and behavior. PROGRESS IN BRAIN RESEARCH 2025; 291:339-361. [PMID: 40222786 DOI: 10.1016/bs.pbr.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
There is an integral relationship between stress, brain function and behavior. Over the year's extensive research has led to the development of various models to explain the intricate intersection between brain and stress. This chapter delves into some of the theoretical frameworks that explains the neurobiological and behavioral responses to stress using key models of stress such as the allostatic load model, which is the most common model that describes how chronic stress affect brain structure and function resulting in long-term changes in regions such as the hippocampus, amygdala, and prefrontal cortex which phenotypically express as cognitive impairments, emotional dysfunction seen in various forms of neurological disorder. The neuro-endocrine model, follows the glucocorticoid cascade hypothesis, that associates prolonged stress exposure to hippocampal damage and cognitive decline via alteration in the hypothalamic-pituitary-adrenal (HPA) axis and the overproduction of stress hormones like cortisol which can induce hippocampal atrophy, impair learning and memory, and promote depressive-like behaviors. The neurobiological stress model addresses the role of the hypothalamic-pituitary-adrenal (HPA) axis and stress-related neurotransmitters in shaping behavioral responses, emphasizing alterations in neuroplasticity and synaptic function. These models demonstrate how chronic stress can alter neural plasticity, neurotransmitter systems, and synaptic connectivity, affecting behavior and cognitive function. Hence by integrating molecular, neurobiological, and behavioral perspectives, these models offer a comprehensive understanding of how stress alters brain activity and behavior. The chapter further showcase how these models direct the development of medical interventions, shedding light on potential therapies that target the underlying molecular mechanisms of stress-induced brain changes.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Iyamho-Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Gideon S Alex
- University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
2
|
Shen XY, Zhang J, Huang HZ, Li SD, Zhou L, Wu SP, Tang C, Huang X, Liu ZQ, Guo ZY, Li X, Man HY, Lu YM, Zhu LQ, Liu D. The interaction of Synapsin 2a and Synaptogyrin-3 regulates fear extinction in mice. J Clin Invest 2024; 134:e172802. [PMID: 38175724 PMCID: PMC10866652 DOI: 10.1172/jci172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.
Collapse
Affiliation(s)
- Xi-Ya Shen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shao-Dan Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Tang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiang Li
- Department of Neurosurgery and
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Avecillas-Chasin JM, Levinson S, Kuhn T, Omidbeigi M, Langevin JP, Pouratian N, Bari A. Connectivity-based parcellation of the amygdala and identification of its main white matter connections. Sci Rep 2023; 13:1305. [PMID: 36693904 PMCID: PMC9873600 DOI: 10.1038/s41598-023-28100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The amygdala plays a role in emotion, learning, and memory and has been implicated in behavioral disorders. Better understanding of the amygdala circuitry is crucial to develop new therapies for these disorders. We used data from 200 healthy-subjects from the human connectome project. Using probabilistic tractography, we created population statistical maps of amygdala connectivity to brain regions involved in limbic, associative, memory, and reward circuits. Based on the amygdala connectivity with these regions, we applied k-means clustering to parcellate the amygdala into three clusters. The resultant clusters were averaged across all subjects and the main white-matter pathways of the amygdala from each averaged cluster were generated. Amygdala parcellation into three clusters showed a medial-to-lateral pattern. The medial cluster corresponded with the centromedial and cortical nuclei, the basal cluster with the basal nuclei and the lateral cluster with the lateral nuclei. The connectivity analysis revealed different white-matter pathways consistent with the anatomy of the amygdala circuit. This in vivo connectivity-based parcellation of the amygdala delineates three clusters of the amygdala in a mediolateral pattern based on its connectivity with brain areas involved in cognition, memory, emotion, and reward. The human amygdala circuit presented in this work provides the first step for personalized amygdala circuit mapping for patients with behavioral disorders.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Department of Neurosurgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, 68198-8437, USA. .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Simon Levinson
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Mahmoud Omidbeigi
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Bari AA, Sparks H, Levinson S, Wilson B, London ED, Langevin JP, Pouratian N. Amygdala Structural Connectivity Is Associated With Impulsive Choice and Difficulty Quitting Smoking. Front Behav Neurosci 2020; 14:117. [PMID: 32714164 PMCID: PMC7351509 DOI: 10.3389/fnbeh.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction: The amygdala is known to play a role in mediating emotion and possibly addiction. We used probabilistic tractography (PT) to evaluate whether structural connectivity of the amygdala to the brain reward network is associated with impulsive choice and tobacco smoking. Methods: Diffusion and structural MRI scans were obtained from 197 healthy subjects (45 with a history of tobacco smoking) randomly sampled from the Human Connectome database. PT was performed to assess amygdala connectivity with several brain regions. Seed masks were generated, and statistical maps of amygdala connectivity were derived. Connectivity results were correlated with a subject performance both on a delayed discounting task and whether they met specified criteria for difficulty quitting smoking. Results: Amygdala connectivity was spatially segregated, with the strongest connectivity to the hippocampus, orbitofrontal cortex (OFC), and brainstem. Connectivity with the hippocampus was associated with preference for larger delayed rewards, whereas connectivity with the OFC, rostral anterior cingulate cortex (rACC), and insula were associated with preference for smaller immediate rewards. Greater nicotine dependence with difficulty quitting was associated with less hippocampal and greater brainstem connectivity. Scores on the Fagerstrom Test for Nicotine Dependence (FTND) correlated with rACC connectivity. Discussion: These findings highlight the importance of the amygdala-hippocampal-ACC network in the valuation of future rewards and substance dependence. These results will help to identify potential targets for neuromodulatory therapies for addiction and related disorders.
Collapse
Affiliation(s)
- Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hiro Sparks
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Simon Levinson
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bayard Wilson
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Lai G, Langevin JP, Koek RJ, Krahl SE, Bari AA, Chen JWY. Acute Effects and the Dreamy State Evoked by Deep Brain Electrical Stimulation of the Amygdala: Associations of the Amygdala in Human Dreaming, Consciousness, Emotions, and Creativity. Front Hum Neurosci 2020; 14:61. [PMID: 32158384 PMCID: PMC7052301 DOI: 10.3389/fnhum.2020.00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/10/2020] [Indexed: 01/06/2023] Open
Abstract
Accurate localization of complex human experiences such as emotions, dreaming, creativity, and consciousness to specific cerebral structures or neural networks has remained elusive despite technological advances. We report the use of acute deep brain stimulation (DBS) to evoke behavioral and emotional effects by applying electrical stimulation (ES) at various voltage strengths to the basolateral and central subnuclei of the amygdala in addition to the head of hippocampus (HC) for two subjects with medically refractory post-traumatic stress disorder (PTSD). Our results suggest that the amygdala could be a node in a neural network responsible for the generation of complex vivid mental imagery and integrated sensory experiences similar to John Hughlings Jackson's "dreamy state" and "double consciousness," which have been classically associated with temporal lobe epilepsy during uncinate seizures. That we were able to elicit similar vivid, dynamic, complex, bizarre, and original mental imagery with ES in non-epileptic subjects suggests that Jackson's seizure related "dreamy state" and "double consciousness" may arise from heightened innate brain mechanisms with the amygdala acting as a node in the neural network responsible for physiologic dreaming and creative functions. Furthermore, our subjects experienced different emotions with different stimulation strengths at various electrode contacts. Our results suggest that higher voltage stimulation of the amygdala and HC at 4-5 V leads to predominantly negative responses and 2-4 V stimulation showed inversely coupled positive and negative responses of the amygdala in either hemisphere which may imply hemispheric dominance of emotional valences without relation to handedness. Due to the unique and complex responses dependent on location and strength of stimulation, we advise that all patients receiving DBS of the amygdala undergo acute stimulation mapping in a monitored setting before selecting therapeutic parameters for chronic stimulation.
Collapse
Affiliation(s)
- George Lai
- Neurology Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ralph J Koek
- Psychiatry and Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Psychiatry and Behavior Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott E Krahl
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States.,Research and Development, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Ausaf A Bari
- Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - James W Y Chen
- Neurology Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|