1
|
Bahadorani N, Khanmohammadi R. Effects of transcranial electrical stimulation of the cerebellum, parietal cortex, anterior cingulate, and motor cortex on postural adaptation. Sci Rep 2025; 15:11966. [PMID: 40199894 PMCID: PMC11978788 DOI: 10.1038/s41598-025-92617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Several cortical regions, such as the cerebellum, posterior parietal cortex (PPC), anterior cingulate cortex (ACC), and primary motor cortex (M1), play critical roles in postural adaptation. However, studies examining the effects of transcranial direct current stimulation (tDCS) on postural adaptation in healthy individuals are limited and often yield inconsistent findings, making it challenging to draw definitive conclusions. Most research has focused on individual brain regions, leaving a gap in understanding how the cerebellum, PPC, ACC, and M1 differentially contribute to postural adaptation. Identifying the most effective brain regions for postural adaptation could optimize rehabilitation strategies for individuals with postural control impairments. Thus, this study compared the effects of tDCS over these specific brain regions on postural adaptation. This parallel, randomized, double-blinded, controlled trial involved 75 participants, divided into five groups: anodal stimulation of the PPC, cerebellum, M1, ACC, or a sham group. Each group received 20 min of direct current stimulation in a single session. Center of pressure (COP) displacement, path length, velocity, and standard deviation (SD) were measured across three trials in the anteroposterior (AP) direction during standing disturbed using vibrators attached to bilateral Achilles tendons. A repeated measure ANOVA was used to assess within-group effects, while one-way ANOVA compared between-group differences. Between-group analysis did not reveal statistically significant differences during both the vibration and post-vibration phases. Nonetheless, the within-group analysis revealed significant enhancements in postural adaptation for the PPC and cerebellum groups during the vibration phase. Specifically, the PPC group demonstrated significant reductions in COP displacement (P = 0.005), path length (P = 0.018), and SD of COP displacement (P = 0.045) across trials. Similarly, in the cerebellar group, significant improvements were noted in COP displacement (P = 0.044), velocity (P = 0.006), and phase plane (P = 0.016) across trials. In contrast, no significant changes were found in the M1, ACC, or sham groups during either the vibration or post-vibration phases. In conclusion, while intergroup comparisons were not significant, intra-group analysis revealed that PPC and cerebellar stimulation significantly enhanced postural adaptation. Incorporating tDCS over the PPC or cerebellum in postural training programs could improve postural control, potentially reducing fall risk in clinical populations such as older adults or individuals with neurological dysfunction.RCT registration: On the Iranian Registry of Clinical Trials (IRCT20220819055745N1). Registration date: 15/11/2022.
Collapse
Affiliation(s)
- Nastaran Bahadorani
- Physical Therapy Department, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran.
- Physical Therapy Department, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Di Caro V, Cesari P, Sala F, Cattaneo L. The neural bases of the reach-grasp movement in humans: Quantitative evidence from brain lesions. Proc Natl Acad Sci U S A 2025; 122:e2419801122. [PMID: 40042909 PMCID: PMC11912408 DOI: 10.1073/pnas.2419801122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Visually guided grasping is a fundamental building block of animal behavior, the specific neural mechanisms of which remain poorly documented in the human brain. We have mapped the causal contribution of different brain parts to grasping behavior by studying the kinematic parameters of 33 patients with brain tumors, engaged in actions directed toward objects of different sizes. Using motion capture techniques, we analyzed the dynamics of grip aperture and wrist transport. Voxel-based lesion-symptom mapping analysis was applied to correlate lesion volumes with specific behavioral deficits. Results showed that lesions in the anterior and lateral bank of the intraparietal sulcus produced impaired finger scaling related to object size. Conversely, impaired velocity of finger aperture was associated with lesions in the dorsal premotor cortex (PMd). Grip aperture deficits following dominant hemisphere lesions were bilateral and were unilateral when following nondominant hemisphere lesions. Impaired wrist transport during reaching was associated with lesions in the first segment of the superior longitudinal fasciculus. Our work highlights an architecture of the grasping network in humans, with unique species-specific features. We hypothesize a model of human neural architecture in which object geometry for hand preshaping is first coded in the left anterior intraparietal cortex and then shared with the right hemisphere. Execution of the motor program of hand preshaping is then performed by the PMd on the corresponding side.
Collapse
Affiliation(s)
- Valeria Di Caro
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona37134, Italy
| | - Paola Cesari
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona37134, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona37134, Italy
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences, University of Trento, Trento38123, Italy
- Center for Medical Sciences, University of Trento, Trento38122, Italy
| |
Collapse
|
3
|
Blum EG, Edmunds KJ, Breidenbach B, Cook N, Driscoll I, Lose SR, Bendlin BB, Ma Y, Christian B, Betthauser TJ, Sager M, Asthana S, Johnson SC, Cook DB, Okonkwo OC. Physical activity and APOE neuropathology score modify the association of age and [ 11C]-PiB-PET amyloid burden in a cohort enriched with risk for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.01.25323157. [PMID: 40093261 PMCID: PMC11908305 DOI: 10.1101/2025.03.01.25323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Physical activity (PA) is a protective factor against amyloid-β (Aβ) accumulation in adults at risk for Alzheimer's disease (AD). This association, however, may differ by apolipoprotein E (APOE) genotype. This work examines interactions between age, PA, and neuropathology-based genetic risk for AD (APOE np ) on Aβ burden in cortical regions sensitive to its accumulation. Materials and Methods Included were 388 cognitively unimpaired, older (mean age ± SD = 68.10 ± 7.09; 66% female) participants from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study. The cohort was enriched with both family history of AD at enrollment and a higher overall prevalence of APOE ε4 allele carriage than typically observed in the general population. PA was assessed using a self-reported questionnaire. Aβ burden was measured using Pittsburg Compound B (11C-PiB) PET imaging, which allowed us to derive volume corrected distribution volume ratio (DVR) maps from nine bilateral regions of interest (ROIs) and a global cortical composite score. Linear regression models examined the interactions between age, PA, and APOE np on Aβ burden. Finally, APOE np scores were aggregated according to estimated risk to illustrate the differential effects between active (weekly moderate PA ≥ 150 minutes) and inactive individuals. Results Three-way interactions (Age × PA × APOE np ) were significant (all P's ≤ 0.05) for the global cortical composite and six of the examined ROIs (the PPC, ACC, mOFC, SMG, MTG, and STG). Models stratified by APOE np and PA showed greater levels of age-related Aβ accumulation in each of these ROIs, with the greatest effects in inactive participants with high APOE np scores. Conclusion Individuals with high APOE np scores who concomitantly engage in suboptimal weekly moderate-intensity PA have greater Aβ burden. These findings underscore how both PA and APOE haplotype play intersect in modifying age-related Aβ burden in brain regions susceptible to its deposition in cognitively unimpaired, older adults at risk for AD.
Collapse
Affiliation(s)
- Eli G Blum
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Kyle J Edmunds
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Institute of Biomedical and Neural Engineering (IBNE), Reykjavík University, 101 Reykjavík, Iceland
| | - Brianne Breidenbach
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Noah Cook
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110
| | - Ira Driscoll
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sarah R Lose
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Bradley Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Mark Sager
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Dane B Cook
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Department of Kinesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
4
|
Giampiccolo D. Towards a shared electrogenesis mechanism in direct cortical responses, axono-cortical evoked potentials, and cortico-cortical evoked potentials. Clin Neurophysiol 2025; 169:89-90. [PMID: 39592337 DOI: 10.1016/j.clinph.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.
| |
Collapse
|
5
|
Zhang Y, Li Z, Xu H, Song Z, Xie P, Wei P, Zhao G. Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes. SENSORS (BASEL, SWITZERLAND) 2024; 25:56. [PMID: 39796846 PMCID: PMC11722664 DOI: 10.3390/s25010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method. Furthermore, a single-channel neural mass model was constructed to analyze the impact of parameter variations on the average power of simulated signals. Finally, model parameters were adjusted to achieve feature fitting between the simulated signals and the average power of the alpha rhythm. Results showed that alpha rhythm average power in the contralateral cortical regions increased with higher grip force levels. Similarly, the power of the simulated signals also increased with specific parameter (J, Ge, and Gi) increases, closely approximating the measured EEG signal changes. The findings suggest that increasing grip force activates more motor neurons in the motor cortex and raises their firing rate. Neural mass modeling provides a computational neuroscience approach to understanding the dynamic changes in alpha rhythms in the motor cortex under different grip force levels.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| | - Zhaoying Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| | - Hang Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| | - Ziang Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China; (Y.Z.); (Z.L.); (H.X.); (Z.S.)
| |
Collapse
|
6
|
Khedr EM, Ahmed GK, Korayem MA, Elamary SASH, El-kholy MM, Haridy NA. Short-Term Therapeutic Effect of Repetitive Transcranial Magnetic Stimulations of Sleep Disorders in Parkinson's Disease: A Randomized Clinical Trial (Pilot Study). Brain Sci 2024; 14:556. [PMID: 38928556 PMCID: PMC11201640 DOI: 10.3390/brainsci14060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to evaluate the efficacy of rTMS in treating sleep disorders in PD. It included 24 patients with PD who had sleep disorders. Group allocations (active or sham with a ratio of 2:1) were placed in serially numbered closed envelopes. Each patient was evaluated with the following: MDS-UPDRS, Parkinson's Disease Sleep Scale (PDSS), Beck Depression Inventory (BDI), and polysomnography (PSG) before and 10 days after the treatment sessions. Each session consisted of 10 trains, 20 Hz, 10 sec for each, over the parietal cortex (bilaterally). Scores of UPDRS, BDI, and PDSS improved significantly in the active group but not in the sham group. The PSG data showed that sleep onset and rapid eye movement (REM) latencies (min), REM duration, and time spent awake (both as %TST) were improved after rTMS in the active group compared with the sham group. The number of awakenings, the wake-after-sleep onset index, the arousal index, and periodic leg movements (PLMs) were all significantly reduced in the active group but not in the sham group. Ten sessions of 20 Hz rTMS over parietal cortexes improved sleep quality and PLMs in patients with PD. The improvement in PSG and PDSS were correlated with improvements in UPDRS and BDI scores.
Collapse
Affiliation(s)
- Eman M. Khedr
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.K.A.); (M.A.K.); (N.A.H.)
| | - Gellan K. Ahmed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.K.A.); (M.A.K.); (N.A.H.)
| | - Mohammad Ahmad Korayem
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.K.A.); (M.A.K.); (N.A.H.)
| | | | - Maha M. El-kholy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Nourelhoda A. Haridy
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.K.A.); (M.A.K.); (N.A.H.)
| |
Collapse
|
7
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Lee DH, Chung CK, Kim JS, Ryun S. Unraveling tactile categorization and decision-making in the subregions of supramarginal gyrus via direct cortical stimulation. Clin Neurophysiol 2024; 158:16-26. [PMID: 38134532 DOI: 10.1016/j.clinph.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.
Collapse
Affiliation(s)
- Dong Hyeok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Holmes NP, Di Chiaro NV, Crowe EM, Marson B, Göbel K, Gaigalas D, Jay T, Lockett AV, Powell ES, Zeni S, Reader AT. Transcranial magnetic stimulation over supramarginal gyrus stimulates primary motor cortex directly and impairs manual dexterity: implications for TMS focality. J Neurophysiol 2024; 131:360-378. [PMID: 38197162 PMCID: PMC11551002 DOI: 10.1152/jn.00369.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Based on human motor cortex, the effective spatial resolution of transcranial magnetic stimulation (TMS) is often described as 5-20 mm, because small changes in TMS coil position can have large effects on motor-evoked potentials (MEPs). MEPs are often studied at rest, with muscles relaxed. During muscle contraction and movement, corticospinal excitability is higher, thresholds for effective stimulation are lower, and MEPs can be evoked from larger regions of scalp, so the effective spatial resolution of TMS is larger. We found that TMS over the supramarginal gyrus (SMG) impaired manual dexterity in the grooved pegboard task. It also resulted in short-latency MEPs in hand muscles, despite the coil being 55 mm away from the motor cortex hand area (M1). MEPs might be evoked by either a specific corticospinal connection from SMG or a remote but direct electromagnetic stimulation of M1. To distinguish these alternatives, we mapped MEPs across the scalp during rest, isotonic contraction, and manual dexterity tasks and ran electric field simulations to model the expected M1 activation from 27 scalp locations and four coil orientations. We also systematically reviewed studies using TMS during movement. Across five experiments, TMS over SMG reliably evoked MEPs during hand movement. These MEPs were consistent with direct M1 stimulation and substantially decreased corticospinal thresholds during natural movement. Systematic review suggested that 54 published experiments may have suffered from similar motor activation confounds. Our results have implications for the assumed spatial resolution of TMS, and especially when TMS is presented within 55 mm of the motor cortex.NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS) is often described as having an effective spatial resolution of ∼10 mm, because of the limited area of the scalp on which TMS produces motor-evoked potentials (MEPs) in resting muscles. We find that during natural hand movement TMS evokes MEPs from a much larger scalp area, in particular when stimulating over the supramarginal gyrus 55 mm away. Our results show that TMS can be effective at much larger distances than generally assumed.
Collapse
Affiliation(s)
- Nicholas P Holmes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | | | - Emily M Crowe
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Ben Marson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Karen Göbel
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Dominykas Gaigalas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Talia Jay
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Abigail V Lockett
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Eleanor S Powell
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Silvia Zeni
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Arran T Reader
- Department of Psychology, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
10
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Dou Y, Xia J, Fu M, Cai Y, Meng X, Zhan Y. Identification of epileptic networks with graph convolutional network incorporating oscillatory activities and evoked synaptic responses. Neuroimage 2023; 284:120439. [PMID: 37939889 DOI: 10.1016/j.neuroimage.2023.120439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Stereoelectroencephalography (SEEG) offers unique neural data from in-depth brain structures with fine temporal resolutions to better investigate the origin of epileptic brain activities. Although oscillatory patterns from different frequency bands and functional connectivity computed from the SEEG datasets are employed to study the epileptic zones, direct electrical stimulation-evoked electrophysiological recordings of synaptic responses, namely cortical-cortical evoked potentials (CCEPs), from the same SEEG electrodes are not explored for the localization of epileptic zones. Here we proposed a two-stream model with unsupervised learning and graph convolutional network tailored to the SEEG and CCEP datasets in individual patients to perform localization of epileptic zones. We compared our localization results with the clinically marked electrode sites determined for surgical resections. Our model had good classification capability when compared to other state-of-the-art methods. Furthermore, based on our prediction results we performed group-level brain-area mapping analysis for temporal, frontal and parietal epilepsy patients and found that epileptic and non-epileptic brain networks were distinct in patients with different types of focal epilepsy. Our unsupervised data-driven model provides personalized localization analysis for the epileptic zones. The epileptic and non-epileptic brain areas disclosed by the prediction model provide novel insights into the network-level pathological characteristics of epilepsy.
Collapse
Affiliation(s)
- Yonglin Dou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Xia
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengmeng Fu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yunpeng Cai
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yang Zhan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
12
|
Potvin-Desrochers A, Martinez-Moreno A, Clouette J, Parent-L'Ecuyer F, Lajeunesse H, Paquette C. Upregulation of the parietal cortex improves freezing of gait in Parkinson's disease. J Neurol Sci 2023; 452:120770. [PMID: 37633012 DOI: 10.1016/j.jns.2023.120770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND The posterior parietal cortex (PPC) is a key brain area for visuospatial processing and locomotion. It has been repetitively shown to be involved in the neural correlates of freezing of gait (FOG), a common symptom of Parkinson's disease (PD). However, current neuroimaging modalities do not allow to precisely determine the role of the PPC during real FOG episodes. OBJECTIVES The purpose of this study was to modulate the PPC cortical excitability using repetitive transcranial magnetic stimulation (rTMS) to determine whether the PPC contributes to FOG or compensates for dysfunctional neural networks to reduce FOG. METHODS Fourteen participants with PD who experience freezing took part in a proof of principle study consisting of three experimental sessions targeting the PPC with inhibitory, excitatory, and sham rTMS. Objective FOG outcomes and cortical excitability measurements were acquired before and after each stimulation protocol. RESULTS Increasing PPC excitability resulted in significantly fewer freezing episodes and percent time frozen during a FOG-provoking task. This reduction in FOG most likely emerged from the trend in PPC inhibiting the lower leg motor cortex excitability. CONCLUSION Our results suggest that the recruitment of the PPC is linked to less FOG, providing support for the beneficial role of the PPC upregulation in preventing FOG. This could potentially be linked to a reduction of the cortical input burden on the basal ganglia prior to FOG. Excitatory rTMS interventions targeting the PPC may have the potential to reduce FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Alejandra Martinez-Moreno
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Julien Clouette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Frédérike Parent-L'Ecuyer
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Henri Lajeunesse
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Caroline Paquette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Elmalem MS, Moody H, Ruffle JK, de Schotten MT, Haggard P, Diehl B, Nachev P, Jha A. A framework for focal and connectomic mapping of transiently disrupted brain function. Commun Biol 2023; 6:430. [PMID: 37076578 PMCID: PMC10115870 DOI: 10.1038/s42003-023-04787-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
The distributed nature of the neural substrate, and the difficulty of establishing necessity from correlative data, combine to render the mapping of brain function a far harder task than it seems. Methods capable of combining connective anatomical information with focal disruption of function are needed to disambiguate local from global neural dependence, and critical from merely coincidental activity. Here we present a comprehensive framework for focal and connective spatial inference based on sparse disruptive data, and demonstrate its application in the context of transient direct electrical stimulation of the human medial frontal wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework formalizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical parametric mapping framework, encompassing the analysis of distributed maps defined by any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome approach reveals marked discrepancies between local and distributed associations of major categories of motor and sensory behaviour, revealing differentiation by remote connectivity to which purely local analysis is blind. Our framework enables disruptive mapping of the human brain based on sparsely sampled data with minimal spatial assumptions, good statistical efficiency, flexible model formulation, and explicit comparison of local and distributed effects.
Collapse
Affiliation(s)
- Michael S Elmalem
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Hanna Moody
- UCL Queen Square Institute of Neurology, London, UK
| | - James K Ruffle
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénérative, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| | - Ashwani Jha
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
14
|
Yu S, Stock AK, Münchau A, Frings C, Beste C. Neurophysiological principles of inhibitory control processes during cognitive flexibility. Cereb Cortex 2023:6969136. [PMID: 36610732 DOI: 10.1093/cercor/bhac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
Inhibitory control plays an indispensable role in cognitive flexibility. Nevertheless, the neurophysiological principles underlying this are incompletely understood. This owes to the fact that the representational dynamics, as coded in oscillatory neural activity of different frequency bands has not been considered until now-despite being of conceptual relevance. Moreover, it is unclear in how far distinct functional neuroanatomical regions are concomitantly involved in the processing of representational dynamics. We examine these questions using a combination of EEG methods. We show that theta-band activity plays an essential role for inhibitory control processes during cognitive flexibility across informational aspects coded in distinct fractions of the neurophysiological signal. It is shown that posterior parietal structures and the inferior parietal cortex seem to be the most important cortical region for inhibitory control processes during cognitive flexibility. Theta-band activity plays an essential role in processes of retrieving the previously inhibited representations related to the current task during cognitive flexibility. The representational content relevant for inhibitory processes during cognitive flexibility is coded in the theta frequency band. We outline how the observed neural mechanisms inform recent overarching cognitive frameworks on how flexible action control is accomplished.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| |
Collapse
|
15
|
The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Struct Funct 2023; 228:103-120. [PMID: 35995880 DOI: 10.1007/s00429-022-02551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.
Collapse
|
16
|
Lavrador JP, Keeble H, Ghimire P, Fiorini F, Bhangoo R, Vergani F, Gullan R, Ashkan K. Commissural Inter-M1 Cortico-cortical Evoked Potential: A Proof of Concept Report. World Neurosurg 2022; 164:64-68. [PMID: 35472647 DOI: 10.1016/j.wneu.2022.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intraoperative neuromonitoring of motor functions experienced a dramatical revolution in the last years thanks to significant advances in anesthesiology procedures and both preoperative and intraoperative mapping techniques. Asleep, awake, and combined intraoperative mapping techniques were responsible for an improvement in the functional outcomes in neurosurgery, providing reliable and reproducible mapping of both projection and association fibers involved in motor control. METHODS We report inter-M1 cortico-cortical evoked potential (CCEP) recording during asleep resection of a bilateral parasagittal meningioma with intraoperative neuromonitoring and motor mapping. RESULTS CCEPs were recorded between both M1 cortices with bipolar stimulations of both supplementary motor areas (10.5-11.5 μV). CONCLUSIONS Here, we provide evidence of intraoperative mapping of commissural fibres involved in motor control in a patient with asleep technique as well as a review of the potential tracts involved in the connectivity underlying the motor function.
Collapse
Affiliation(s)
- Jose Pedro Lavrador
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK
| | | | - Prajwal Ghimire
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK.
| | - Francesco Fiorini
- Neurosurgery Department, Royal London Hospital Foundation Trust, London, UK
| | - Ranjeev Bhangoo
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK
| | - Francesco Vergani
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK
| | - Richard Gullan
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK
| | - Keyoumars Ashkan
- Neurosurgery Department, King's College Hospital Foundation Trust, London, UK
| |
Collapse
|
17
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
18
|
Fornia L, Rossi M, Rabuffetti M, Bellacicca A, Viganò L, Simone L, Howells H, Puglisi G, Leonetti A, Callipo V, Bello L, Cerri G. Motor impairment evoked by direct electrical stimulation of human parietal cortex during object manipulation. Neuroimage 2021; 248:118839. [PMID: 34963652 DOI: 10.1016/j.neuroimage.2021.118839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
In primates, the parietal cortex plays a crucial role in hand-object manipulation. However, its involvement in object manipulation and related hand-muscle control has never been investigated in humans with a direct and focal electrophysiological approach. To this aim, during awake surgery for brain tumors, we studied the impact of direct electrical stimulation (DES) of parietal lobe on hand-muscles during a hand-manipulation task (HMt). Results showed that DES applied to fingers-representation of postcentral gyrus (PCG) and anterior intraparietal cortex (aIPC) impaired HMt execution. Different types of EMG-interference patterns were observed ranging from a partial (task-clumsy) or complete (task-arrest) impairment of muscles activity. Within PCG both patterns coexisted along a medio (arrest)-lateral (clumsy) distribution, while aIPC hosted preferentially the task-arrest. The interference patterns were mainly associated to muscles suppression, more pronounced in aIPC with respect to PCG. Moreover, within PCG were observed patterns with different level of muscle recruitment, not reported in the aIPC. Overall, EMG-interference patterns and their probabilistic distribution suggested the presence of different functional parietal sectors, possibly playing different roles in hand-muscle control during manipulation. We hypothesized that task-arrest, compared to clumsy patterns, might suggest the existence of parietal sectors more closely implicated in shaping the motor output.
Collapse
Affiliation(s)
- Luca Fornia
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | | | - Andrea Bellacicca
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Luciano Simone
- Cognition, Motion & Neuroscience, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Guglielmo Puglisi
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Antonella Leonetti
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Vincenzo Callipo
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy.
| |
Collapse
|
19
|
Giampiccolo D, Parmigiani S, Basaldella F, Russo S, Pigorini A, Rosanova M, Cattaneo L, Sala F. Reply to "Intraoperative cortico-cortical evoked potentials for monitoring the arcuate fasciculus: Feasible under general anesthesia?". Clin Neurophysiol 2021; 133:177-178. [PMID: 34776357 DOI: 10.1016/j.clinph.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Parmigiani
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | | | - Simone Russo
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Luigi Cattaneo
- CIMEC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
20
|
Breveglieri R, Borgomaneri S, Filippini M, De Vitis M, Tessari A, Fattori P. Functional Connectivity at Rest between the Human Medial Posterior Parietal Cortex and the Primary Motor Cortex Detected by Paired-Pulse Transcranial Magnetic Stimulation. Brain Sci 2021; 11:brainsci11101357. [PMID: 34679421 PMCID: PMC8534070 DOI: 10.3390/brainsci11101357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The medial posterior parietal cortex (PPC) is involved in the complex processes of visuomotor integration. Its connections to the dorsal premotor cortex, which in turn is connected to the primary motor cortex (M1), complete the fronto-parietal network that supports important cognitive functions in the planning and execution of goal-oriented movements. In this study, we wanted to investigate the time-course of the functional connectivity at rest between the medial PPC and the M1 using dual-site transcranial magnetic stimulation in healthy humans. We stimulated the left M1 using a suprathreshold test stimulus to elicit motor-evoked potentials in the hand, and a subthreshold conditioning stimulus was applied over the left medial PPC at different inter-stimulus intervals (ISIs). The conditioning stimulus affected the M1 excitability depending on the ISI, with inhibition at longer ISIs (12 and 15 ms). We suggest that these modulations may reflect the activation of different parieto-frontal pathways, with long latency inhibitions likely recruiting polisynaptic pathways, presumably through anterolateral PPC.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Correspondence: ; Tel.: +39-05-1209-1890; Fax: +39-05-1209-1737
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy;
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Alessia Tessari
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy;
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Alma Mater Research Institute for Human—Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Ma ZZ, Lu YC, Wu JJ, Hua XY, Li SS, Ding W, Xu JG. Effective connectivity decreases in specific brain networks with postparalysis facial synkinesis: a dynamic causal modeling study. Brain Imaging Behav 2021; 16:748-760. [PMID: 34550534 DOI: 10.1007/s11682-021-00547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Currently, the treatments for postparalysis facial synkinesis are still inadequate. However, neuroimaging mechanistic studies are very limited and blurred. Instead of mapping activation regions, we were devoted to characterizing the organizational features of brain regions to develop new targets for therapeutic intervention. Eighteen patients with unilateral facial synkinesis and 19 healthy controls were enrolled. They were instructed to perform task functional magnetic resonance imaging (eye blinking and lip pursing) examinations and resting-state scans. Then, we characterized group differences in task-state fMRI to identify three foci, including the contralateral precentral gyrus (PreCG), supramarginal gyrus (SMG), and superior parietal gyrus (SPG). Next, we employed a novel approach (using dynamic causal modeling) to identify directed connectivity differences between groups in different modes. Significant patterns in multiple regions in terms of regionally specific actions following synkinetic movements were demonstrated, although the resting state was not significant. The couplings from the SMG to the PreCG (p = 0.03) was significant in the task of left blinking, whereas the coupling from the SMG to the SPG (p = 0.04) was significant in the task of left smiling. We speculated that facial synkinesis affects disruption among the brain networks, and specific couplings that are modulated simultaneously can compensate for motor deficits. Therefore, behavioral or brain stimulation technique treatment could be applied to alter reorganization within specific couplings in the rehabilitation of facial function.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Chen Lu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, China.
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Hand Surgery, Huashan Hospital, Fudan University, No.1200 Cailun Road, Shanghai, China.
| |
Collapse
|
22
|
Sala F, Giampiccolo D, Cattaneo L. Novel Asleep Techniques for Intraoperative Assessment of Brain Connectivity. Front Neurol 2021; 12:687030. [PMID: 34262525 PMCID: PMC8273240 DOI: 10.3389/fneur.2021.687030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Francesco Sala
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Giampiccolo
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
23
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
24
|
Giampiccolo D, Basaldella F, Badari A, Squintani GM, Cattaneo L, Sala F. Feasibility of cerebello-cortical stimulation for intraoperative neurophysiological monitoring of cerebellar mutism. Childs Nerv Syst 2021; 37:1505-1514. [PMID: 33835202 PMCID: PMC8084839 DOI: 10.1007/s00381-021-05126-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cerebellar mutism can occur in a third of children undergoing cerebellar resections. Recent evidence proposes it may arise from uni- or bilateral damage of cerebellar efferents to the cortex along the cerebello-dento-thalamo-cortical pathway. At present, no neurophysiological procedure is available to monitor this pathway intraoperatively. Here, we specifically aimed at filling this gap. METHODS We assessed 10 patients undergoing posterior fossa surgery using a conditioning-test stimulus paradigm. Electrical conditioning stimuli (cStim) were delivered to the exposed cerebellar cortex at interstimulus intervals (ISIs) of 8-24 ms prior to transcranial electric stimulation of the motor cortex, which served as test stimulus (tStim). The variation of motor-evoked potentials (MEP) to cStim + tStim compared with tStim alone was taken as a measure of cerebello-cortical connectivity. RESULTS cStim alone did not produce any MEP. cStim preceding tStim produced a significant inhibition at 8 ms (p < 0.0001) compared with other ISIs when applied to the lobules IV-V-VI in the anterior cerebellum and the lobule VIIB in the posterior cerebellum. Mixed effects of decrease and increase in MEP amplitude were observed in these areas for longer ISIs. CONCLUSIONS The inhibition exerted by cStim at 8 ms on the motor cortex excitability is likely to be the product of activity along the cerebello-dento-thalamo-cortical pathway. We show that monitoring efferent cerebellar pathways to the motor cortex is feasible in intraoperative settings. This study has promising implications for pediatric posterior fossa surgery with the aim to preserve the cerebello-cortical pathways and thus prevent cerebellar mutism.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Neurosurgery, University Hospital, Piazzale Stefani 1, 37124, Verona, Italy
| | - Federica Basaldella
- Intraoperative Neurophysiology Unit, Division of Neurology, University Hospital, Verona, Italy
| | - Andrea Badari
- Intraoperative Neurophysiology Unit, Division of Neurology, University Hospital, Verona, Italy
| | | | - Luigi Cattaneo
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Neurosurgery, University Hospital, Piazzale Stefani 1, 37124, Verona, Italy.
| |
Collapse
|
25
|
Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coudé G, Szathmari A, Mottolese C, Sirigu A, Hiba B. Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study. Neuroimage 2021; 235:118002. [PMID: 33789136 DOI: 10.1016/j.neuroimage.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
Collapse
Affiliation(s)
- Nathalie Richard
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Michel Desmurget
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Institut de neurosciences cognitives et intégratives d'Aquitaine, CNRS / UMR 5287, 33076 Bordeaux, France
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Lara Bardi
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Gino Coudé
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Carmine Mottolese
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Angela Sirigu
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France.
| |
Collapse
|
26
|
Orban GA, Lanzilotto M, Bonini L. From Observed Action Identity to Social Affordances. Trends Cogn Sci 2021; 25:493-505. [PMID: 33745819 DOI: 10.1016/j.tics.2021.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.
Collapse
Affiliation(s)
- G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Lanzilotto
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
27
|
Baarbé J, Vesia M, Brown MJN, Lizarraga KJ, Gunraj C, Jegatheeswaran G, Drummond NM, Rinchon C, Weissbach A, Saravanamuttu J, Chen R. Interhemispheric interactions between the right angular gyrus and the left motor cortex: a transcranial magnetic stimulation study. J Neurophysiol 2021; 125:1236-1250. [PMID: 33625938 DOI: 10.1152/jn.00642.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interconnection of the angular gyrus of right posterior parietal cortex (PPC) and the left motor cortex (LM1) is essential for goal-directed hand movements. Previous work with transcranial magnetic stimulation (TMS) showed that right PPC stimulation increases LM1 excitability, but right PPC followed by left PPC-LM1 stimulation (LPPC-LM1) inhibits LM1 corticospinal output compared with LPPC-LM1 alone. It is not clear if right PPC-mediated inhibition of LPPC-LM1 is due to inhibition of left PPC or to combined effects of right and left PPC stimulation on LM1 excitability. We used paired-pulse TMS to study the extent to which combined right and left PPC stimulation, targeting the angular gyri, influences LM1 excitability. We tested 16 healthy subjects in five paired-pulsed TMS experiments using MRI-guided neuronavigation to target the angular gyri within PPC. We tested the effects of different right angular gyrus (RAG) and LM1 stimulation intensities on the influence of RAG on LM1 and on influence of left angular gyrus (LAG) on LM1 (LAG-LM1). We then tested the effects of RAG and LAG stimulation on LM1 short-interval intracortical facilitation (SICF), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). The results revealed that RAG facilitated LM1, inhibited SICF, and inhibited LAG-LM1. Combined RAG-LAG stimulation did not affect SICI but increased LICI. These experiments suggest that RAG-mediated inhibition of LAG-LM1 is related to inhibition of early indirect (I)-wave activity and enhancement of GABAB receptor-mediated inhibition in LM1. The influence of RAG on LM1 likely involves ipsilateral connections from LAG to LM1 and heterotopic connections from RAG to LM1.NEW & NOTEWORTHY Goal-directed hand movements rely on the right and left angular gyri (RAG and LAG) and motor cortex (M1), yet how these brain areas functionally interact is unclear. Here, we show that RAG stimulation facilitated right hand motor output from the left M1 but inhibited indirect (I)-waves in M1. Combined RAG and LAG stimulation increased GABAB, but not GABAA, receptor-mediated inhibition in left M1. These findings highlight unique brain interactions between the RAG and left M1.
Collapse
Affiliation(s)
- Julianne Baarbé
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Michael Vesia
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Matt J N Brown
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Department of Kinesiology, California State University, Sacramento, California
| | - Karlo J Lizarraga
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Motor Physiology and Neuromodulation Program, Division of Movement Disorders and Center for Health + Technology, Department of Neurology, University of Rochester, Rochester, New York
| | - Carolyn Gunraj
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Gaayathiri Jegatheeswaran
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Neil M Drummond
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Cricia Rinchon
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Anne Weissbach
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - James Saravanamuttu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Robert Chen
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Goldenkoff ER, Logue RN, Brown SH, Vesia M. Reduced Facilitation of Parietal-Motor Functional Connections in Older Adults. Front Aging Neurosci 2021; 13:595288. [PMID: 33597858 PMCID: PMC7882479 DOI: 10.3389/fnagi.2021.595288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
Age-related changes in cortico-cortical connectivity in the human motor network in older adults are associated with declines in hand dexterity. Posterior parietal cortex (PPC) is strongly interconnected with motor areas and plays a critical role in many aspects of motor planning. Functional connectivity measures derived from dual-site transcranial magnetic stimulation (dsTMS) studies have found facilitatory inputs from PPC to ipsilateral primary motor cortex (M1) in younger adults. In this study, we investigated whether facilitatory inputs from PPC to M1 are altered by age. We used dsTMS in a conditioning-test paradigm to characterize patterns of functional connectivity between the left PPC and ipsilateral M1 and a standard pegboard test to assess skilled hand motor function in 13 young and 13 older adults. We found a PPC-M1 facilitation in young adults but not older adults. Older adults also showed a decline in motor performance compared to young adults. We conclude that the reduced PPC-M1 facilitation in older adults may be an early marker of age-related decline in the neural control of movement.
Collapse
Affiliation(s)
- Elana R Goldenkoff
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Rachel N Logue
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Susan H Brown
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Giampiccolo D, Parisi C, Meneghelli P, Tramontano V, Basaldella F, Pasetto M, Pinna G, Cattaneo L, Sala F. Long-term motor deficit in brain tumour surgery with preserved intra-operative motor-evoked potentials. Brain Commun 2021; 3:fcaa226. [PMID: 33615216 PMCID: PMC7884605 DOI: 10.1093/braincomms/fcaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Cristiano Parisi
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Pietro Meneghelli
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Vincenzo Tramontano
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Federica Basaldella
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Marco Pasetto
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Giampietro Pinna
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Luigi Cattaneo
- CIMEC-Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| |
Collapse
|