1
|
Ehsani F, Jayedi A, Motaharinezhad F, Jaberzadeh S. The effects of transcranial direct current stimulation montages on motor learning across various brain regions: A systematic review and network meta-analysis. Neuroscience 2025; 569:32-42. [PMID: 39894438 DOI: 10.1016/j.neuroscience.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Transcranial direct current stimulation (tDCS) is an effective rehabilitation strategy that promotes motor learning. The related studies reported different findings through different modalities of tDCS over different brain regions. This study aimed to identify the optimal effects of tDCS on motor learning through a systematic review and network meta-analysis, focusing on determining the best electrode montage and assessing the efficacy of various tDCS configurations. The search was performed from PubMed, Scopus, and Web of Science databases from inception until April 15, 2022. Nineteen eligible studies were included in the study. The findings indicated that motor cortex (M1) a-tDCS and cerebellar a-tDCS significantly enhance motor learning (short-term and long-term efficacy on both parameters of motor learning; Response Time (RT) and Error Rate (ER)) more than posterior parietal cortex (PPC) a-tDCS (P < 0.5,0.65 to 90 % in SUCRA). Dual site tDCS enhances motor learning (efficacy on parameters of motor learning; RT and ER), with more efficacy as compared to unilateral tDCS (P < 0.05, 78 % to 84 % in SUCRA). In addition, the findings indicated that PPC a-tDCS has the least efficacy of motor learning as compared to the other tDCS interventions (P < 0.05, 0.5 % to 0.13 %). It is suggested that dual site tDCS and M1 or cerebellar a-tDCS be used, as compared to other tDCS interventions in other brain regions, for the improvement of motor learning.
Collapse
Affiliation(s)
- Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Motaharinezhad
- Department of Occupational Therapy, School of Rehabilitation Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Zhou D, Li X, Wei S, Yu C, Wang D, Li Y, Li J, Liu J, Li S, Zhuang W, Li Y, Luo R, Liu Z, Liu J, Xu Y, Fan J, Zhu G, Xu W, Tang Y, Cho RY, Kosten TR, Zhang XY. Transcranial Direct Current Stimulation Combined With Repetitive Transcranial Magnetic Stimulation for Depression: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2444306. [PMID: 39535797 PMCID: PMC11561687 DOI: 10.1001/jamanetworkopen.2024.44306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are both recognized as effective treatments for depression when applied individually. However, it is unknown whether rTMS combined with tDCS has better efficacy in the treatment of major depressive disorder (MDD). Objective To investigate the clinical effectiveness and safety of rTMS, tDCS, tDCS + rTMS, and sham tDCS + sham rTMS after 2 weeks of treatment in patients with MDD. Design, Setting, and Participants This double-blind, sham-controlled randomized clinical trial was conducted from November 2021 to April 2023 at 3 hospitals in China (Kangning Hospital affiliated with Ningbo University, Lishui Second People's Hospital, and Taizhou Second People's Hospital). Adult patients (aged 18-65 years) who were diagnosed with major depressive disorder were recruited. Participants were randomly assigned to 1 of 4 interventions: active tDCS + active rTMS, sham tDCS + active rTMS, active tDCS + sham rTMS, and sham tDCS + sham rTMS. Data analysis followed an intention-to-treat approach. Intervention Patients received a 2-week course of treatment. The tDCS was administered using a 2-mA direct current stimulator with electrodes placed on the left and right dorsolateral prefrontal cortex (DLPFC). Each tDCS session lasted 20 minutes and was conducted 30 to 60 minutes prior to the rTMS session for a total of 10 sessions. The rTMS was delivered at a frequency of 10 Hz using a figure-8 coil placed on the left DLPFC, with each session consisting of 1600 pulses. Treatments were administered 5 times per week for 2 weeks. Sham treatments were performed with a pseudostimulation coil and emitted only sound. Main Outcomes and Measures The primary outcome was the change in total score from baseline to week 2 on the 24-item Hamilton Depression Rating Scale (HDRS-24; score range: 0-52, with the highest score indicating more severe symptoms). Results A total of 240 participants (139 females [57.9%]; mean [SD] age, 32.50 [15.18] years) were included. As a primary outcome, patients who received active tDCS + active rTMS showed a significantly greater reduction in mean (SD) HDRS-24 total scores compared with patients in the other 3 groups (active tDCS + active rTMS: 18.33 [5.39], sham tDCS + active rTMS: 14.86 [5.59], active tDCS + sham rTMS: 9.21 [4.61], and sham tDCS + sham rTMS: 10.77 [5.67]; F3,236 = 35.79; η2 = 0.31 [95% CI, 0.21-0.39]; P < .001). Conclusions and Relevance This trial found that tDCS + rTMS was a more effective and safe treatment option than either the tDCS or rTMS intervention alone for patients with MDD. Trial Registration China Clinical Trial Registry Identifier ChiCTR2100052122.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Xingxing Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuochi Wei
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Chang Yu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuchen Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shen Li
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Wenhao Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Yanli Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Ruichenxi Luo
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Zhiwang Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Yongming Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jialin Fan
- Department of Psychiatry, Lishui’s Second People’s Hospital, Lishui, Zhejiang, China
| | - Guidong Zhu
- Department of Psychiatry, Lishui’s Second People’s Hospital, Lishui, Zhejiang, China
| | - Weiqian Xu
- Department of Psychiatry, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Yiping Tang
- Department of Psychiatry, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Raymond Y. Cho
- Department of Psychiatry and Behavioral Sciences and The Menninger Clinic, Baylor College of Medicine, Houston, Texas
| | - Thomas R. Kosten
- Department of Psychiatry and Behavioral Sciences and The Menninger Clinic, Baylor College of Medicine, Houston, Texas
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Tseng PT, Zeng BY, Wang HY, Zeng BS, Liang CS, Chen YCB, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Chen YW, Hsu CW, Hung KC, Shiue YL, Li CT. Efficacy and acceptability of noninvasive brain stimulation for treating posttraumatic stress disorder symptoms: A network meta-analysis of randomized controlled trials. Acta Psychiatr Scand 2024; 150:5-21. [PMID: 38616056 DOI: 10.1111/acps.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Despite its high lifetime prevalence rate and the elevated disability caused by posttraumatic stress disorder (PTSD), treatments exhibit modest efficacy. In consideration of the abnormal connectivity between the dorsolateral prefrontal cortex (DLPFC) and amygdala in PTSD, several randomized controlled trials (RCTs) addressing the efficacy of different noninvasive brain stimulation (NIBS) modalities for PTSD management have been undertaken. However, previous RCTs have reported inconsistent results. The current network meta-analysis (NMA) aimed to compare the efficacy and acceptability of various NIBS protocols in PTSD management. METHODS We systematically searched ClinicalKey, Cochrane Central Register of Controlled Trials, Embase, ProQuest, PubMed, ScienceDirect, Web of Science, and ClinicalTrials.gov to identify relevant RCTs. The targeted RCTs was those comparing the efficacy of NIBS interventions, such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and transcutaneous cervical vagal nerve stimulation, in patients with PTSD. The NMA was conducted using a frequentist model. The primary outcomes were changes in the overall severity of PTSD and acceptability (to be specific, rates of dropouts for any reason). RESULTS We identified 14 RCTs that enrolled 686 participants. The NMA demonstrated that among the investigated NIBS types, high-frequency rTMS over bilateral DLPFCs was associated with the greatest reduction in overall PTSD severity. Further, in comparison with the sham controls, excitatory stimulation over the right DLPFC with/without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms, including depression and anxiety symptoms, and overall PTSD severity. CONCLUSIONS This NMA demonstrated that excitatory stimulation over the right DLPFC with or without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms. TRIAL REGISTRATION PROSPERO CRD42023391562.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Yan Zeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Yu Wang
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yang-Chieh Brian Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
- Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
- Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
5
|
Brandt-Rauf PW, Ayaz H. Occupational Health and Neuroergonomics: The Future of Wearable Neurotechnologies at the Workplace. J Occup Environ Med 2024; 66:456-460. [PMID: 38829949 DOI: 10.1097/jom.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Paul W Brandt-Rauf
- From the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | | |
Collapse
|
6
|
Walia P, Fu Y, Norfleet J, Schwaitzberg SD, Intes X, De S, Cavuoto L, Dutta A. Brain-behavior analysis of transcranial direct current stimulation effects on a complex surgical motor task. FRONTIERS IN NEUROERGONOMICS 2024; 4:1135729. [PMID: 38234492 PMCID: PMC10790853 DOI: 10.3389/fnrgo.2023.1135729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcranial Direct Current Stimulation (tDCS) has demonstrated its potential in enhancing surgical training and performance compared to sham tDCS. However, optimizing its efficacy requires the selection of appropriate brain targets informed by neuroimaging and mechanistic understanding. Previous studies have established the feasibility of using portable brain imaging, combining functional near-infrared spectroscopy (fNIRS) with tDCS during Fundamentals of Laparoscopic Surgery (FLS) tasks. This allows concurrent monitoring of cortical activations. Building on these foundations, our study aimed to explore the multi-modal imaging of the brain response using fNIRS and electroencephalogram (EEG) to tDCS targeting the right cerebellar (CER) and left ventrolateral prefrontal cortex (PFC) during a challenging FLS suturing with intracorporeal knot tying task. Involving twelve novices with a medical/premedical background (age: 22-28 years, two males, 10 females with one female with left-hand dominance), our investigation sought mechanistic insights into tDCS effects on brain areas related to error-based learning, a fundamental skill acquisition mechanism. The results revealed that right CER tDCS applied to the posterior lobe elicited a statistically significant (q < 0.05) brain response in bilateral prefrontal areas at the onset of the FLS task, surpassing the response seen with sham tDCS. Additionally, right CER tDCS led to a significant (p < 0.05) improvement in FLS scores compared to sham tDCS. Conversely, the left PFC tDCS did not yield a statistically significant brain response or improvement in FLS performance. In conclusion, right CER tDCS demonstrated the activation of bilateral prefrontal brain areas, providing valuable mechanistic insights into the effects of CER tDCS on FLS peformance. These insights motivate future investigations into the effects of CER tDCS on error-related perception-action coupling through directed functional connectivity studies.
Collapse
Affiliation(s)
- Pushpinder Walia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Yaoyu Fu
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | - Jack Norfleet
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, United States
| | - Steven D. Schwaitzberg
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, United States
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Suvranu De
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Caccianiga G, Mooney RA, Celnik PA, Cantarero GL, Brown JD. Anodal cerebellar t-DCS impacts skill learning and transfer on a robotic surgery training task. Sci Rep 2023; 13:21394. [PMID: 38123594 PMCID: PMC10733429 DOI: 10.1038/s41598-023-47404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through a remotely operated robot. Given the need for high skill proficiency and the lack of haptic feedback, there is a pressing need for understanding and improving skill development. We investigated the effect of cerebellar transcranial direct current stimulation applied during the execution of a robotic surgery training task. Study participants received either real or sham stimulation while performing a needle driving task in a virtual (simulated) and a real-world (actual surgical robot) setting. We found that cerebellar stimulation significantly improved performance compared to sham stimulation at fast (more demanding) execution speeds in both virtual and real-world training settings. Furthermore, participants that received cerebellar stimulation more effectively transferred the skills they acquired during virtual training to the real world. Our findings underline the potential of non-invasive brain stimulation to enhance skill learning and transfer in real-world relevant tasks and, more broadly, its potential for improving complex motor learning.
Collapse
Affiliation(s)
- Guido Caccianiga
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, 21218, USA.
- Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany.
| | - Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
- Shirley Ryan AbilityLab, Chicago, 60611, USA
| | - Gabriela L Cantarero
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
| | - Jeremy D Brown
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
8
|
Galvin D, Toth AJ, O'Reilly B, O'Sullivan R, Campbell MJ. M1 transcranial direct current stimulation augments laparoscopic surgical skill acquisition. Sci Rep 2023; 13:13731. [PMID: 37612337 PMCID: PMC10447451 DOI: 10.1038/s41598-023-40440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
The acquisition of basic surgical skills is a key component of medical education and trainees in laparoscopic surgery typically begin developing their skills using simulation box trainers. However, despite the advantages of simulation surgical training, access can be difficult for many trainees. One technique that has shown promise to enhance the deliberate practice of motor skills is transcranial electric stimulation (tES). The purpose of this study was to assess the impact of transcranial direct current stimulation (tDCS) on training induced improvements and retention of traditional time and kinematic based laparoscopic surgical skill metrics. Forty-nine medical students were randomly allocated to a neurostimulation or sham group and completed 5 training sessions of a bead transfer and threading laparoscopic task. Participants in both the sham and stimulation groups significantly improved their time and kinematic performance on both tasks following training. Although we did find that participants who received M1 tDCS saw greater performance benefits in response to training on a bead transfer task compared to those receiving sham stimulation no effect of neurostimulation was found for the threading task. This finding raises new questions regarding the effect that motor task complexity has on the efficacy of neurostimulation to augment training induced improvement and contributes to a growing body of research investigating the effects of neurostimulation on the sensory-motor performance of laparoscopic surgical skill.
Collapse
Affiliation(s)
- Daniel Galvin
- ASSERT Centre, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam J Toth
- Lero, The Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland.
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
| | - Barry O'Reilly
- ASSERT Centre, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ray O'Sullivan
- ASSERT Centre, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mark J Campbell
- Lero, The Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Chatterjee SA, Seidler RD, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Effects of Prefrontal Transcranial Direct Current Stimulation on Retention of Performance Gains on an Obstacle Negotiation Task in Older Adults. Neuromodulation 2023; 26:829-839. [PMID: 35410769 PMCID: PMC9547038 DOI: 10.1016/j.neurom.2022.02.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would produce greater within-session improvements in walking performance and retention of gains, compared to sham tDCS and no tDCS conditions. MATERIALS AND METHODS A total of 50 older adults (mean age = 74.46 years ± 6.49) with self-reported walking difficulty were randomized to receive either active tDCS (active-tDCS group) or sham tDCS (sham-tDCS group) bilaterally to the dorsolateral prefrontal cortex or no tDCS (no-tDCS group). Each group performed ten practice trials of an obstacle negotiation task at their fastest safe speed. Retention of gains in walking performance was assessed with three trials conducted one week later. Within-session effects of practice and between-session retention effects on obstacle negotiation speed were examined. RESULTS At the practice session, all three groups exhibited significant within-session gains in walking speed (p ≤ 0.005). However, the gains were significantly greater in the sham-tDCS group than in the active-tDCS and no-tDCS groups (p ≤ 0.03) and were comparable between the active-tDCS and no-tDCS groups (p = 0.89). At one-week follow-up, the active-tDCS group exhibited significant between-session retention of gains and continued "offline" improvement in walking speed (p = 0.005). The active-tDCS group showed significantly greater retention of gains than the no-tDCS (p = 0.02) but not the sham-tDCS group (p = 0.24). CONCLUSIONS Pairing prefrontal active tDCS with a single session of obstacle negotiation practice may enhance one-week retention of gains in walking performance compared to no tDCS. However, the evidence is insufficient to suggest a benefit of active tDCS over sham tDCS for enhancing the gains in walking performance. Additional studies with a multisession intervention design and larger sample size are needed to further investigate these findings. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT03122236.
Collapse
Affiliation(s)
- Sudeshna A Chatterjee
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jared W Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dorian K Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brooks Rehabilitation, Jacksonville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
10
|
Watanabe A, Sawamura D, Nakazono H, Tokikuni Y, Miura H, Sugawara K, Fuyama K, Tohyama H, Yoshida S, Sakai S. Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. J Transl Med 2023; 21:143. [PMID: 36823635 PMCID: PMC9951449 DOI: 10.1186/s12967-023-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The left dorsolateral prefrontal cortex (DLPFC) is involved in early-phase manual dexterity skill acquisition when cognitive control processes, such as integration and complexity demands, are required. However, the effectiveness of left DLPFC transcranial direct current stimulation (tDCS) on early-phase motor learning and whether its effectiveness depends on the cognitive demand of the target task are unclear. This study aimed to investigate whether tDCS over the left DLPFC improves non-dominant hand dexterity performance and determine if its efficacy depends on the cognitive demand of the target task. METHODS In this randomized, double-blind, sham-controlled trial, 70 healthy, right-handed, young adult participants were recruited. They were randomly allocated to the active tDCS (2 mA for 20 min) or sham groups and repeatedly performed the Purdue Pegboard Test (PPT) left-handed peg task and left-handed assembly task three times: pre-tDCS, during tDCS, and post tDCS. RESULTS The final sample comprised 66 healthy young adults (mean age, 22.73 ± 1.57 years). There were significant interactions between group and time in both PPT tasks, indicating significantly higher performance of those in the active tDCS group than those in the sham group post tDCS (p < 0.001). Moreover, a greater benefit was observed in the left-handed assembly task performance than in the peg task performance (p < 0.001). No significant correlation between baseline performance and benefits from tDCS was observed in either task. CONCLUSIONS These results demonstrated that prefrontal tDCS significantly improved early-phase manual dexterity skill acquisition, and its benefits were greater for the task with high cognitive demands. These findings contribute to a deeper understanding of the underlying neurophysiological mechanisms of the left DLPFC in the modulation of early-phase dexterity skill acquisition. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000046868), Registered February 8, 2022 https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053467.
Collapse
Affiliation(s)
- Akihiro Watanabe
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Hisato Nakazono
- grid.443459.b0000 0004 0374 9105Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001 Japan
| | - Yukina Tokikuni
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Hiroshi Miura
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Kazuhiro Sugawara
- grid.263171.00000 0001 0691 0855Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556 Japan
| | - Kanako Fuyama
- grid.412167.70000 0004 0378 6088Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648 Japan
| | - Harukazu Tohyama
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| | - Susumu Yoshida
- grid.412021.40000 0004 1769 5590Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293 Japan
| | - Shinya Sakai
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
11
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Patel R, Suwa Y, Kinross J, von Roon A, Woods AJ, Darzi A, Singh H, Leff DR. Neuroenhancement of surgeons during robotic suturing. Surg Endosc 2022; 36:4803-4814. [PMID: 34724587 PMCID: PMC9160107 DOI: 10.1007/s00464-021-08823-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The initial phases of robotic surgical skills acquisition are associated with poor technical performance, such as low knot-tensile strength (KTS). Transcranial direct-current stimulation (tDCS) can improve force and accuracy in motor tasks but research in surgery is limited to open and laparoscopic tasks in students. More recently, robotic surgery has gained traction and is now the most common approach for certain procedures (e.g. prostatectomy). Early-phase robotic suturing performance is dependent on prefrontal cortex (PFC) activation, and this study aimed to determine whether performance can be improved with prefrontal tDCS. METHODS Fifteen surgical residents were randomized to either active then sham tDCS or sham then active tDCS, in two counterbalanced sessions in a double-blind crossover study. Within each session, participants performed a robotic suturing task repeated in three blocks: pre-, intra- and post-tDCS. During the intra-tDCS block, participants were randomized to either active tDCS (2 mA for 15 min) to the PFC or sham tDCS. Primary outcome measures of technical quality included KTS and error scores. RESULTS Significantly faster completion times were observed longitudinally, regardless of active (p < 0.001) or sham stimulation (p < 0.001). KTS was greater following active compared to sham stimulation (median: active = 44.35 N vs. sham = 27.12 N, p < 0.001). A significant reduction in error scores from "pre-" to "post-" (p = 0.029) were only observed in the active group. CONCLUSION tDCS could reduce error and enhance KTS during robotic suturing and warrants further exploration as an adjunct to robotic surgical training.
Collapse
Affiliation(s)
- Ronak Patel
- Deparment of Surgery and Cancer, Imperial College London, London, UK.
| | - Yusuke Suwa
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | - James Kinross
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | | | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ara Darzi
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | - Harsimrat Singh
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
13
|
Saldarini F, Gottlieb N, Stokes PRA. Neural correlates of working memory function in euthymic people with bipolar disorder compared to healthy controls: A systematic review and meta-analysis. J Affect Disord 2022; 297:610-622. [PMID: 34715175 DOI: 10.1016/j.jad.2021.10.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bipolar disorders (BD) are serious mental health disorders that impacts on cognitive and social functioning. We aimed to systematically review and conduct a meta-analysis of fMRI correlates of working memory in euthymic people with BD compared to healthy participants. METHOD Web of Science, Embase and PubMed databases were systematically searched to identify studies which examined the fMRI correlates of working memory function in euthymic people with BD and healthy participants. Relevant demographic, behavioral and functional MRI (fMRI) data was qualitatively and quantitatively assessed, and the quality of the included studies evaluated. Comparable studies which used the same working memory task were included in a meta-analysis using Seed-Based D Mapping software (SDM). RESULTS Twenty-four studies were included in this systematic review. Consistent brain fMRI activity differences were found in key brain areas of the working memory network in euthymic people with BD compared to healthy participants including the ventromedial and dorsolateral prefrontal cortices. Cognitive performance was not significantly different between the two groups. Six studies were suitable to be included in the meta-analysis. There was no significant overlap in areas of brain activation after family-wise correction for multiple comparisons. LIMITATIONS Heterogeneity of task paradigms, small sample sizes and inherent difficulty in the interpretation of functional brain activity due to variations between studies were all limitations. CONCLUSION The differences in working memory related fMRI activity identified by this study between people with BD and healthy participants are consistent with existing literature reporting impaired working memory performance in BD. This was not accompanied by significant differences in cognitive performance in the reviewed studies, likely due to small sample sizes. Further studies are needed to investigate the relationship between differential brain activity and working memory performance in people with BD.
Collapse
Affiliation(s)
- Francesco Saldarini
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park; London, Camberwell SE5 8AB, United Kingdom
| | - Natalie Gottlieb
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park; London, Camberwell SE5 8AB, United Kingdom.
| | - Paul R A Stokes
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park; London, Camberwell SE5 8AB, United Kingdom
| |
Collapse
|
14
|
Valter Y, Moreno J, Grym G, Gabay E, Nazim K, Datta A. Universal Transcranial Direct Current Stimulation (tDCS) Headset for targeting the bilateral Dorsolateral Prefrontal Cortex: Towards facilitating broader adoption. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5055-5058. [PMID: 34892343 DOI: 10.1109/embc46164.2021.9630608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrode position affects the brain current flow intensity and distribution induced by transcranial direct current stimulation (tDCS). The dorsolateral pre-frontal cortex (DLPFC) is a common target in neuropsychology and neuropsychiatry applications. A positioning scheme and subsequently a headgear has previously been developed to target the DLPFC automatically - devoid of any scalp ruler or neuronavigation method. This approach minimizes the time cost for pre-treatment measurements without compromising targeting accuracy and induced electric field focality. The goal of this study was to further develop this headgear to facilitate broader adoption while maintaining its core design elements intact. Briefly, we developed the headset to accommodate all adult head sizes (52-62 cm) rather than having multiple sizes, to have increased robustness, enhanced visual aesthetics, and have improved usability.We recruited 8 subjects and tested the accuracy of electrode placement on various head sizes. We also tested usability with the System Usability Scale (SUS) and asked the subjects to rate visual appeal. Our study demonstrated that the newly developed headset had greater usability and was more visually appealing than its predecessor without compromising targeting accuracy.Clinical Relevance- This study introduces a headset for routine tDCS administration targeting bilateral DLPFC. The headset is highly usable, robust, and is expected to facilitate home and high-volume use.
Collapse
|
15
|
Walia P, Fu Y, Schwaitzberg SD, Intes X, De S, Cavuoto L, Dutta A. Neuroimaging guided tES to facilitate complex laparoscopic surgical tasks - insights from functional near-infrared spectroscopy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7437-7440. [PMID: 34892815 DOI: 10.1109/embc46164.2021.9631005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fundamentals of Laparoscopic Surgery (FLS) is a prerequisite for board certification in general surgery in the USA. In FLS, the suturing task with intracorporeal knot tying is considered the most complex task. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (PFC) has been shown to facilitate FLS surgical skill acquisition where 2mA tDCS for 15min with the anode over F3 (10/10 EEG montage) and cathode over F4 has improved performance score in an open knot-tying task. Since PFC has a functional organization related to the hierarchy of cognitive control, we performed functional near-infrared spectroscopy (fNIRS) to investigate PFC sub-domain activation during a more complex FLS suturing task with intracorporeal knot tying. We performed fNIRS-based analysis using AtlasViewer software on two expert surgeons and four novice medical students. We found an average cortical activation mainly at the left frontopolar PFC across the experts, while the average cortical activation across the novices was primarily at the left pars opercularis of the inferior frontal gyrus and ventral premotor cortex, inferior parietal lobule, and supramarginal gyrus. Here, the average cortical activation across the novices included not only the cognitive control related brain regions but also motor control complexity related brain regions. Therefore, we present a computational pipeline to identify a 4x1 high-definition (HD) tDCS montage of motor complexity related PFC sub-regions using ROAST software.Clinical Relevance-A computational pipeline for fNIRS-guided tES to individualize electrode montage that may facilitate FLS surgical training in our future studies.
Collapse
|
16
|
Walia P, Kumar KN, Dutta A. Neuroimaging Guided Transcranial Electrical Stimulation in Enhancing Surgical Skill Acquisition. Comment on Hung et al. The Efficacy of Transcranial Direct Current Stimulation in Enhancing Surgical Skill Acquisition: A Preliminary Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2021, 11, 707. Brain Sci 2021; 11:1078. [PMID: 34439698 PMCID: PMC8395024 DOI: 10.3390/brainsci11081078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Surgical skill acquisition may be facilitated with a safe application of transcranial direct current stimulation (tDCS). A preliminary meta-analysis of randomized control trials showed that tDCS was associated with significantly better improvement in surgical performance than the sham control; however, meta-analysis does not address the mechanistic understanding. It is known from skill learning studies that the hierarchy of cognitive control shows a rostrocaudal axis in the frontal lobe where a shift from posterior to anterior is postulated to mediate progressively abstract, higher-order control. Therefore, optimizing the transcranial electrical stimulation to target surgical task-related brain activation at different stages of motor learning may provide the causal link to the learning behavior. This comment paper presents the computational approach for neuroimaging guided tDCS based on open-source software pipelines and an open-data of functional near-infrared spectroscopy (fNIRS) for complex motor tasks. We performed an fNIRS-based cortical activation analysis using AtlasViewer software that was used as the target for tDCS of the motor complexity-related brain regions using ROAST software. For future studies on surgical skill training, it is postulated that the higher complexity laparoscopic suturing with intracorporeal knot tying task may result in more robust activation of the motor complexity-related brain areas when compared to the lower complexity laparoscopic tasks.
Collapse
Affiliation(s)
- Pushpinder Walia
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Kavya Narendra Kumar
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| |
Collapse
|
17
|
The Efficacy of Transcranial Direct Current Stimulation in Enhancing Surgical Skill Acquisition: A Preliminary Meta-Analysis of Randomized Controlled Trials. Brain Sci 2021; 11:brainsci11060707. [PMID: 34071756 PMCID: PMC8229080 DOI: 10.3390/brainsci11060707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
The application of transcranial direct current stimulation (tDCS) to targeted cortices has been found to improve in skill acquisition; however, these beneficial effects remained unclear in fine and complicated skill. The aim of the current meta-analysis was to investigate the association between tDCS application and the efficacy of surgical performance during surgical skill training. We included randomized controlled trials (RCTs) investigating the efficacy of tDCS in enhancing surgical skill acquisition. This meta-analysis was conducted under a random-effect model. Six RCTs with 198 participants were included. The main result revealed that tDCS was associated with significantly better improvement in surgical performance than the sham control (Hedges’ g = 0.659, 95% confidence intervals (95%CIs) = 0.383 to 0.935, p < 0.001). The subgroups of tDCS over the bilateral prefrontal cortex (Hedges’ g = 0.900, 95%CIs = 0.419 to 1.382, p < 0.001) and the primary motor cortex (Hedges’ g = 0.599, 95%CIs = 0.245 to 0.953, p = 0.001) were both associated with significantly better improvements in surgical performance. The tDCS application was not associated with significant differences in error scores or rates of local discomfort compared with a sham control. This meta-analysis supported the rationale for the tDCS application in surgical training programs to improve surgical skill acquisition.
Collapse
|
18
|
Patel R, Rai A, Thornton-Wood F, Wilkinson A, Darzi A, Singh H, Leff DR. Neuroenhancement of future surgeons - Opinions from students, surgeons and patients. Brain Stimul 2021; 14:616-618. [PMID: 33789167 DOI: 10.1016/j.brs.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ronak Patel
- Department of Surgery and Cancer, Imperial College London, UK.
| | - Amar Rai
- Department of Surgery and Cancer, Imperial College London, UK
| | | | - Aimee Wilkinson
- Department of Surgery and Cancer, Imperial College London, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, UK
| | - Harsimrat Singh
- Department of Surgery and Cancer, Imperial College London, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
19
|
Patel R, Singh H, Ashcroft J, Woods AJ, Darzi A, Leff DR. Dataset of prefrontal transcranial direct-current stimulation to improve early surgical knot-tying skills. Data Brief 2021; 35:106905. [PMID: 33732823 PMCID: PMC7941089 DOI: 10.1016/j.dib.2021.106905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) has previously demonstrated promising effects in improving surgical performance with motor region stimulation [1], [2], [3], [4]. However, extensive prior research has revealed an important role of the prefrontal cortex in surgical skill development [5,6]. This article presents the data of a double-blind randomized sham-controlled trial investigating the effect of prefrontal tDCS on knot-tying performance [7]. Data was collected from an active (n = 20) and sham (n = 20) group across three blocks: pre-, online- (during) and post-tDCS. Group and block differences of knot-tying performance were analyzed using a Generalized linear mixed model and supported with a Friedman's test. Further sub-analyses were conducted to compare high vs. low skilled individuals and initial vs. last knots. Subjective workload was assessed after each block using a SURG-TLX questionnaire and side-effects of the tDCS block were recorded using an additional survey.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Surgery & Cancer, Imperial College London, St Mary's Hospital Campus, 10th Floor, QEQM Building, Praed Street, London W2 1NY, United Kingdom
| | - Harsimrat Singh
- Department of Surgery & Cancer, Imperial College London, St Mary's Hospital Campus, 10th Floor, QEQM Building, Praed Street, London W2 1NY, United Kingdom
| | - James Ashcroft
- Department of Surgery & Cancer, Imperial College London, St Mary's Hospital Campus, 10th Floor, QEQM Building, Praed Street, London W2 1NY, United Kingdom
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, St Mary's Hospital Campus, 10th Floor, QEQM Building, Praed Street, London W2 1NY, United Kingdom
| | - Daniel R Leff
- Department of Surgery & Cancer, Imperial College London, St Mary's Hospital Campus, 10th Floor, QEQM Building, Praed Street, London W2 1NY, United Kingdom
| |
Collapse
|