1
|
Tezanos P, Trejo JL. Why are threatening experiences remembered so well? Insights into memory strengthening from protocols of gradual aversive learning. Neurosci Biobehav Rev 2025; 174:106145. [PMID: 40250543 DOI: 10.1016/j.neubiorev.2025.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Aversive experiences often result in strong and persistent memory traces, which can sometimes lead to conditions such as Post-Traumatic Stress Disorder or phobias. Aversive stimulation tests are key tools in psychology and neuroscience for studying learning and memory. These tests typically use electric shocks as the unconditioned stimulus, allowing for precise control over the aversive content of the learning event. This feature has led to extensive research applying these tests with varying shock intensities to examine differences in learning, behavior, and memory formation between low- and high-aversive experiences. This line of research is particularly valuable for understanding the neurobiology underlying memory strengthening, but, to our knowledge, no review has yet compiled and organized the findings from this specific methodology. In this comprehensive review, we focus primarily on animal studies that have employed the same aversive test (i.e. Fear Conditioning, Passive Avoidance, Active Avoidance or Operant boxes) at different intensities. We will first outline and briefly describe the main aversive learning paradigms used in this field. Next, we will examine the relationship between aversiveness and memory strength. Finally, we will explore the neurobiological insights these studies have revealed over the years. Our aim is to gain a better understanding of how the nervous system gradually strengthens memory, while also addressing the remaining gaps and challenges in this area of research.
Collapse
Affiliation(s)
- Patricia Tezanos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid 28002, Spain
| | - José Luis Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| |
Collapse
|
2
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
3
|
Lei L, Lai CSW, Lee TMC, Lam CLM. The effect of transcranial direct current and magnetic stimulation on fear extinction and return of fear: A meta-analysis and systematic review. J Affect Disord 2024; 362:263-286. [PMID: 38908557 DOI: 10.1016/j.jad.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans. METHODS The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R. RESULTS We identified 18 articles on the tDCS effect and 5 articles on the TMS effect, with 466 animal subjects and 621 human subjects. Our findings show that tDCS of the prefrontal cortex significantly inhibit fear retrieval in animal models (Hedges' g = -0.50). In human studies, TMS targeting the dorsolateral/ventromedial prefrontal cortex has an inhibiting effect on the return of fear (Hedges' g = -0.24). LIMITATIONS The limited number of studies and the heterogeneous designs of the selected studies made cross-study and cross-species comparison difficult. CONCLUSIONS Our findings shed light on the optimal non-invasive brain stimulation protocols for targeting the neural circuitry of threat extinction in humans.
Collapse
Affiliation(s)
- Letian Lei
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Cora S W Lai
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Eyraud N, Bloch S, Brizard B, Pena L, Tharsis A, Surget A, El-Hage W, Belzung C. Influence of Stress Severity on Contextual Fear Extinction and Avoidance in a Posttraumatic-like Mouse Model. Brain Sci 2024; 14:311. [PMID: 38671963 PMCID: PMC11048507 DOI: 10.3390/brainsci14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use. However, a PTSD-like animal model exhibiting pronounced PTSD-related phenotypes even after an extinction training directly linked to the fearful event is necessary. Thus, using a contextual fear conditioning model of PTSD, we increased the severity of stress during conditioning to search for effects on extinction acquisition and on pre- and post-extinction behaviors. During conditioning, mice received either two or four electrical shocks while a control group was constituted of mice only exposed to the context. Stressed mice exhibited important fear generalization, high fear reaction to the context and selective avoidance of a contextual reminder even after the extinction protocol. Increasing the number of footshocks did not induce major changes on these behaviors.
Collapse
Affiliation(s)
- Noémie Eyraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Solal Bloch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Bruno Brizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Laurane Pena
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Antoine Tharsis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Alexandre Surget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Wissam El-Hage
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
- Pôle de Psychiatrie et d’Addictologie, Centre Hospitalier Régional Universitaire de Tours, 37000 Tours, France
| | - Catherine Belzung
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| |
Collapse
|
5
|
Lee J, Kim YE, Lim J, Jo Y, Lee HJ, Jo YS, Choi JS. Transcranial focused ultrasound stimulation in the infralimbic cortex facilitates extinction of conditioned fear in rats. Brain Stimul 2024; 17:405-412. [PMID: 38537689 DOI: 10.1016/j.brs.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Transcranial focused ultrasound (tFUS) neuromodulation emerges as a promising non-invasive approach for improving neurological conditions. Extinction of conditioned fear has served as a prime model for exposure-based therapies for anxiety disorders. We investigated whether tFUS stimulation to a critical brain area, the infralimbic subdivision of the prefrontal cortex (IL), could facilitate fear extinction using rats. In a series of experiments, tFUS was delivered to the IL of a freely-moving rat and compared to sham stimulation (tFUS vs. SHAM). Initially, Fos expression in the IL was measured shortly after the stimulation. The results show that Fos expression was significantly increased in the IL but not in the neighboring regions compared to SHAM. Subsequently, two groups of rats were subjected to fear conditioning, extinction, and retention while receiving stimulation during the extinction. Rats in the tFUS group froze significantly less than SHAM during both extinction and retention tests. Importantly, the reduced freezing in the tFUS group was not attributable to non-specific effect such as auditory noise, as both groups demonstrated a similar level of locomotive activity in an open field regardless of the stimulation condition. Finally, we replicated the procedure with a shortened conditioning-to-extinction interval (15 min) to induce immediate extinction deficit. The tFUS group showed a facilitated reduction in freezing during the extinction, which persisted in the subsequent retention session compared to SHAM. In summary, the current findings suggest that tFUS stimulation in the IL facilitates fear extinction, offering a potential therapeutic regimen for fear-related psychiatric disorders.
Collapse
Affiliation(s)
- Jaeyong Lee
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Ye Eun Kim
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jihong Lim
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yehhyun Jo
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Dumontoy S, Ramadan B, Risold PY, Pedron S, Houdayer C, Etiévant A, Cabeza L, Haffen E, Peterschmitt Y, Van Waes V. Repeated Anodal Transcranial Direct Current Stimulation (RA-tDCS) over the Left Frontal Lobe Increases Bilateral Hippocampal Cell Proliferation in Young Adult but Not Middle-Aged Female Mice. Int J Mol Sci 2023; 24:ijms24108750. [PMID: 37240095 DOI: 10.3390/ijms24108750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Repeated anodal transcranial direct current stimulation (RA-tDCS) is a neuromodulatory technique consisting of stimulating the cerebral cortex with a weak electric anodal current in a non-invasive manner. RA-tDCS over the dorsolateral prefrontal cortex has antidepressant-like properties and improves memory both in humans and laboratory animals. However, the mechanisms of action of RA-tDCS remain poorly understood. Since adult hippocampal neurogenesis is thought to be involved in the pathophysiology of depression and memory functioning, the purpose of this work was to evaluate the impact of RA-tDCS on hippocampal neurogenesis levels in mice. RA-tDCS was applied for 20 min per day for five consecutive days over the left frontal cortex of young adult (2-month-old, high basal level of neurogenesis) and middle-aged (10-month-old, low basal level of neurogenesis) female mice. Mice received three intraperitoneal injections of bromodeoxyuridine (BrdU) on the final day of RA-tDCS. The brains were collected either 1 day or 3 weeks after the BrdU injections to quantify cell proliferation and cell survival, respectively. RA-tDCS increased hippocampal cell proliferation in young adult female mice, preferentially (but not exclusively) in the dorsal part of the dentate gyrus. However, the number of cells that survived after 3 weeks was the same in both the Sham and the tDCS groups. This was due to a lower survival rate in the tDCS group, which suppressed the beneficial effects of tDCS on cell proliferation. No modulation of cell proliferation or survival was observed in middle-aged animals. Our RA-tDCS protocol may, therefore, influence the behavior of naïve female mice, as we previously described, but its effect on the hippocampus is only transient in young adult animals. Future studies using animal models for depression in male and female mice should provide further insights into RA-tDCS detailed age- and sex-dependent effects on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Stéphanie Dumontoy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | | | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Adeline Etiévant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
7
|
Gao F, Wang J, Yang S, Ji M, Zhu G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology 2023; 222:109306. [PMID: 36341808 DOI: 10.1016/j.neuropharm.2022.109306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Prolonged exposure (PE) therapy aiming to promote fear extinction is a useful treatment for post-traumatic stress disorder (PTSD). However, the mechanisms underlying fear extinction and effective methods used to promote fear extinction in PTSD are still lacking. In this study, we displayed dysfunctions of cyclic adenosine 3,5-monophosphate (cAMP)-protein kinase A (PKA), protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and calcium signaling in peripheral serum of PTSD patients using bioinformatics analysis. Later, we confirmed the dysfunctions of cAMP-PKA, AKT/mTOR and calcium signaling in the hippocampus of PTSD mice. Moreover, the reduction of calpain1 in the hippocampus enhanced fear memory acquisition. Single activation of PKA by systemic application of rolipram (ROL) or meglumine cyclic adenylate (M-cAMP) before re-exposure promoted fear extinction and improved anxiety-like behavior in PTSD mice. Moreover, systemic application of ROL before re-exposure improved hippocampal brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling and calpain1/AKT/mTOR signaling. Interestingly, the effects of activation of PKA could be partially blocked by TrkB antagonist, ANA-12 and mTOR inhibitor, RAPA. Finally, intranasal administration of ROL could also adjust the abnormality of fear memory and improve anxiety-like behaviors in PTSD mice. Collectively, activation of PKA could promote fear extinction, which correlated with the reduction of anxiety-like behavior. The mechanisms were related to the BDNF/TrkB and calpain1/AKT/mTOR signaling pathways. PKA activation might be a useful complementary therapy for PE in the symptom elimination of PTSD.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Manman Ji
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
8
|
Transcranial direct current stimulation (tDCS) reduces motivation to drink ethanol and reacquisition of ethanol self-administration in female mice. Sci Rep 2022; 12:198. [PMID: 34997004 PMCID: PMC8741977 DOI: 10.1038/s41598-021-03940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging noninvasive brain neuromodulation technique aimed at relieving symptoms associated with psychiatric disorders, including addiction. The goal of the present study was to better identify which phase of alcohol-related behavior (hedonic effect, behavioral sensitization, self-administration, or motivation to obtain the drug) might be modulated by repeated anodal tDCS over the frontal cortex (0.2 mA, 20 min, twice a day for 5 consecutive days), using female mice as a model. Our data showed that tDCS did not modulate the hedonic effects of ethanol as assessed by a conditioned place preference test (CPP) or the expression of ethanol-induced behavioral sensitization. Interestingly, tDCS robustly reduced reacquisition of ethanol consumption (50% decrease) following extinction of self-administration in an operant paradigm. Furthermore, tDCS significantly decreased motivation to drink ethanol on a progressive ratio schedule (30% decrease). Taken together, our results show a dissociation between the effects of tDCS on “liking” (hedonic aspect; no effect in the CPP) and “wanting” (motivation; decreased consumption on a progressive ratio schedule). Our tDCS procedure in rodents will allow us to better understand its mechanisms of action in order to accelerate its use as a complementary and innovative tool to help alcohol-dependent patients maintain abstinence or reduce ethanol intake.
Collapse
|
9
|
Buckinx A, Van Schuerbeek A, Bossuyt J, Allaoui W, Van Den Herrewegen Y, Smolders I, De Bundel D. Exploring Refinement Strategies for Single Housing of Male C57BL/6JRj Mice: Effect of Cage Divider on Stress-Related Behavior and Hypothalamic-Pituitary-Adrenal-Axis Activity. Front Behav Neurosci 2021; 15:743959. [PMID: 34776890 PMCID: PMC8581484 DOI: 10.3389/fnbeh.2021.743959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Single housing of laboratory mice is a common practice to meet experimental needs, or to avoid intermale aggression. However, single housing is considered to negatively affect animal welfare and may compromise the scientific validity of experiments. The aim of this study was to investigate whether the use of a cage with a cage divider, which avoids physical contact between mice while maintaining sensory contact, may be a potential refinement strategy for experiments in which group housing of mice is not possible. Methods: Eight-week-old male C57BL/6JRj mice were single housed, pair housed or pair housed with a cage divider for four (experiment 1) or ten (experiment 2) weeks, after which we performed an open field test, Y-maze spontaneous alternation test, elevated plus maze test, an auditory fear conditioning task, and assessed responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis. Results: Housing conditions did not affect body weight, exploratory activity, anxiety, working memory, fear memory processing or markers for HPA-axis functioning in either experiment 1 or experiment 2. There was an increased distance traveled in mice housed with a cage divider compared to pair housed mice after 4 weeks, and after 10 weeks mice housed with a cage divider made significantly more arm entries in the Y-maze spontaneous alternation test. Conclusion: Taken together, our study did not provide evidence for robust differences in exploratory activity, anxiety, working memory and fear memory processing in male C57BL/6JRj mice that were single housed, pair housed or pair housed with a cage divider.
Collapse
Affiliation(s)
- An Buckinx
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andries Van Schuerbeek
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Bossuyt
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wissal Allaoui
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yana Van Den Herrewegen
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Abbasi S, Nasehi M, Ebrahimi-Ghiri M, Zarrindast MR. Anodal tDCS applied to the left frontal cortex abrogates scopolamine-induced fear memory deficit via the dopaminergic system. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|