1
|
Hsu AL, Wu CW, Huang CM, Lin C, Toh CH, Liu HL, Lee TMC, Lee SH. Reliability of brain localization using task-based fMRI for late-life depression with suicidal risk. J Psychiatr Res 2025; 187:10-17. [PMID: 40318407 DOI: 10.1016/j.jpsychires.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Late-life depression (LLD) is a heterogeneous mental disorder with a high risk of suicide, often linked to abnormalities in brain networks, particularly the prefrontal cortex. While transcranial magnetic stimulation targeting the dorsal and ventral lateral prefrontal cortex (DLPFC and VLPFC) has shown promise, its treatment efficacy may be compromised by the imprecise group-level standard methods. Although a personalized localization approach using fMRI is available, no study has yet systematically evaluated its reliability in LLD. This study evaluated the reliability of functional magnetic resonance imaging (fMRI) for targeting DLPFC and VLPFC using numerical Stroop and face/shape matching tasks in LLD patients with varying degrees of suicidality, the disorder's most devastating consequence. A total of 103 LLD patients, including 42 with non-suicidal risk (NS), 37 with suicidal ideation or plans (IP), and 24 with past suicide attempts (SA), underwent task-based fMRI. We performed both voxel-wise statistical analyses and the success rate of DLFPC/VLPFC localization in each subgroup by detecting significant brain activity within predefined masks. The numerical Stroop task reliably localized the bilateral DLPFC in all subgroups and the VLPFC in two-thirds. Success rates for localizing DLPFC were 98 % (41 out of 42 NS), 100 % (IP), and 100 % (SA), while VLPFC localization rates were 95 %, 97 %, and 88 %, respectively. Conversely, the face/shape matching task localized bilateral DLPFC in two-thirds and failed to detect the VLPFC in any subgroup. These findings underscore the potential of task-based fMRI, particularly the numerical Stroop task, as a reliable method for personalized targeting in LLD patients with different suicidality degrees.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan; Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chemin Lin
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Cheng Hong Toh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Shwu-Hua Lee
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Kashyap B, Hanson LR, Gustafson SK, Barclay T, Howe CM, Sherman SJ, Hungs M, Rosenbloom MH. Open label pilot of personalized, neuroimaging-guided theta burst stimulation in early-stage Alzheimer's disease. Front Neurosci 2024; 18:1492428. [PMID: 39717698 PMCID: PMC11663868 DOI: 10.3389/fnins.2024.1492428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is characterized by cerebral amyloid plaques and neurofibrillary tangles and disruption of large-scale brain networks (LSBNs). Transcranial magnetic stimulation (TMS) has emerged as a potential non-invasive AD treatment that may serve as an adjunct therapy with FDA approved medications. Methods We conducted a 10-subject open label, single site study evaluating the effect of functional connectivity-resting state functional MRI guided-approach to TMS targeting with dysfunctional LSBNs in subjects with biomarker-confirmed early-stage AD (https://clinicaltrials.gov/study/NCT05292222). Subjects underwent pre-post imaging and testing to assess connectivity dysfunction and cognition. All participants received intermittent theta burst stimulation [(iTBS), (80% motor threshold; 5 sessions per day; 5 days; 3 targets; 18,000 pulses/day)] over 2 weeks. Three Human Connectome Project (HCP) defined parcellations were targeted, with one common right temporal area G dorsal (RTGd) target across all subjects and two personalized. Results We identified the following parcellations to be dysfunctional: RTGd, left area 8A ventral (L8Av), left area 8B lateral (L8BL), and left area 55b (L55b). There were no changes in these parcellations after treatment, but subjects showed improvement on the Repeatable Battery for the Assessment of Neuropsychological Status attention index (9.7; p = 0.01). No subject dropped out of the treatment, though 3 participants were unable to tolerate the RTGd target due to facial twitching (n = 2) and anxiety (n = 1). Conclusion Accelerated iTBS protocol was well-tolerated and personalized target-based treatment is feasible in early-stage AD. Further sham-controlled clinical trials are necessary to determine if this is an effective adjunctive treatment in early-stage AD.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Leah R. Hanson
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | | | - Terry Barclay
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Clarissa M. Howe
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Samantha J. Sherman
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Marcel Hungs
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Michael H. Rosenbloom
- Memory and Brain Wellness Center, University of Washington, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
- University of Washington Alzheimer’s Disease Research Center, Seattle, WA, United States
| |
Collapse
|
3
|
Tura A, Promet L, Goya-Maldonado R. Structural-functional connectomics in major depressive disorder following aiTBS treatment. Psychiatry Res 2024; 342:116217. [PMID: 39369459 DOI: 10.1016/j.psychres.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/16/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Major depressive disorder (MDD) has been associated with changes in the structural (SC) and functional connectivity (FC) of the brain. This study investigated the effects of accelerated intermittent theta burst stimulation (aiTBS) on SC-FC coupling and graph theory measures, focusing on the association between baseline SC-FC coupling of the dorsolateral prefrontal cortex (dlPFC) and clinical improvement. In a randomized, sham-controlled, quadruple-blind, crossover study, aiTBS was delivered to the left dlPFC of depressed patients with MDD, and diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) data were acquired. In 77 MDD patients, significantly increased whole-brain SC-FC coupling was observed, primarily driven by default mode network (DMN) SC-FC coupling, along with increased somatomotor network FC, and decreased FC between the DMN hubs and limbic regions after active aiTBS. Furthermore, significant increases were observed in structural global and local efficiency measures that were not specific to the stimulation condition (active/sham aiTBS). However, these changes did not significantly correlate with clinical improvement. Notably, baseline SC-FC coupling of the left dlPFC was a significant predictor of clinical improvement. Our findings highlight the potential of left dlPFC SC-FC coupling as a predictor of aiTBS treatment outcomes, as well as the effect of aiTBS in enhancing SC-FC coupling.
Collapse
Affiliation(s)
- Asude Tura
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), University of Göttingen, Göttingen, Germany
| | - Liisi Promet
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), University of Göttingen, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Liu Y, Sundman MH, Ugonna C, Chen YCA, Green JM, Haaheim LG, Siu HM, Chou YH. Reproducible routes: reliably navigating the connectome to enrich personalized brain stimulation strategies. Front Hum Neurosci 2024; 18:1477049. [PMID: 39568548 PMCID: PMC11576443 DOI: 10.3389/fnhum.2024.1477049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technologies, such as repetitive transcranial magnetic stimulation (rTMS), offer significant therapeutic potential for a growing number of neuropsychiatric conditions. Concurrent with the expansion of this field is the swift evolution of rTMS methodologies, including approaches to optimize stimulation site planning. Traditional targeting methods, foundational to early successes in the field and still widely employed today, include using scalp-based heuristics or integrating structural MRI co-registration to align the transcranial magnetic stimulation (TMS) coil with anatomical landmarks. Recent evidence, however, supports refining and personalizing stimulation sites based on the target's structural and/or functional connectivity profile. These connectomic approaches harness the network-wide neuromodulatory effects of rTMS to reach deeper brain structures while also enabling a greater degree of personalization by accounting for heterogenous network topology. In this study, we acquired baseline multimodal magnetic resonance (MRI) at two time points to evaluate the reliability and reproducibility of distinct connectome-based strategies for stimulation site planning. Specifically, we compared the intra-individual difference between the optimal stimulation sites generated at each time point for (1) functional connectivity (FC) guided targets derived from resting-state functional MRI and (2) structural connectivity (SC) guided targets derived from diffusion tensor imaging. Our findings suggest superior reproducibility of SC-guided targets. We emphasize the necessity for further research to validate these findings across diverse patient populations, thereby advancing the personalization of rTMS treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Yu-Chin Allison Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lisbeth G Haaheim
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Hannah M Siu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Tang SJ, Holle J, Mor S, Dadario NB, Ryan M, Teo C, Sughrue M, Yeung J. Improvements in Sleep Quality in Patients With Major Depressive and Generalized Anxiety Disorders Treated With Individualized, Parcel-Guided Transcranial Magnetic Stimulation. Brain Behav 2024; 14:e70088. [PMID: 39415644 PMCID: PMC11483549 DOI: 10.1002/brb3.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Poor quality sleep has often been cited as a cause of lowered quality of life in patients with affective disorders such as major depressive disorder (MDD) and generalized anxiety disorder (GAD). As sleep and affective disorders are affected by multi-network interactions, we hypothesize that the modulation of the central executive network (CEN), salience, and default mode networks (DMNs) through individualized repetitive transcranial magnetic stimulation (rTMS) may improve sleep and quality of life. METHODS A retrospective analysis from 2020 to 2023 was conducted in patients with affective disorders at Cingulum Health. Multiple targets were selected based on anomalies detected from individual, functional connectivity networks from a machine-learning connectivity software. rTMS was conducted with accelerated continuous or intermittent theta burst stimulation (TBS) based on the anomaly detected. Pittsburgh Sleep Quality Index (PSQI), EuroQol (EQ5D), Beck's Depression Inventory (BDI), and the General Anxiety Disorder-7 (GAD-7) questionnaires were administered prior to, after, and at follow-up of rTMS. RESULTS Twenty-seven patients were identified, and the most common diagnoses were MDD (41%) or MDD with GAD (41%). All patients had at least one rTMS target in the CEN. The most common target (19 patients) was L8Av in the dorsolateral prefrontal cortex (dlPFC). Patients experienced significant improvements in sleep, quality of life, depressive, and anxiety symptoms after rTMS and during follow-up. Improvements in sleep correlated with quality of life at follow-up. CONCLUSION This study suggests that personalized, parcel-guided rTMS is safe and may provide sustained improvements in sleep, quality of life, and affective symptoms for patients with affective disorders.
Collapse
Affiliation(s)
- Si Jie Tang
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | | | - Sirjan Mor
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | - Jacky Yeung
- Cingulum HealthRoseberyAustralia
- Department of NeurosurgeryYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
6
|
Briley PM, Webster L, Boutry C, Oh H, Auer DP, Liddle PF, Morriss R. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder. Psychiatry Res Neuroimaging 2024; 342:111846. [PMID: 38908353 DOI: 10.1016/j.pscychresns.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.
Collapse
Affiliation(s)
- P M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom.
| | - L Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - C Boutry
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - H Oh
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - D P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - P F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Cerins A, Thomas EHX, Barbour T, Taylor JJ, Siddiqi SH, Trapp N, McGirr A, Caulfield KA, Brown JC, Chen L. A New Angle on Transcranial Magnetic Stimulation Coil Orientation: A Targeted Narrative Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:744-753. [PMID: 38729243 DOI: 10.1016/j.bpsc.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Transcranial magnetic stimulation (TMS) is used to treat several neuropsychiatric disorders including depression, where it is effective in approximately one half of patients for whom pharmacological approaches have failed. Treatment response is related to stimulation parameters such as the stimulation frequency, pattern, intensity, location, total number of pulses and sessions applied, and target brain network engagement. One critical but underexplored component of the stimulation procedure is the orientation or yaw angle of the commonly used figure-of-eight TMS coil, which is known to impact neuronal response to TMS. However, coil orientation has remained largely unchanged since TMS was first used to treat depression and continues to be based on motor cortex anatomy, which may not be optimal for the dorsolateral prefrontal cortex treatment site. In this targeted narrative review, we evaluate experimental, clinical, and computational evidence indicating that optimizing coil orientation may improve TMS treatment outcomes. The properties of the electric field induced by TMS, the changes to this field caused by the differing conductivities of head tissues, and the interaction between coil orientation and the underlying cortical anatomy are summarized. We describe evidence that the magnitude and site of cortical activation, surrogate markers of TMS dosing and brain network targeting considered central in clinical response to TMS, are influenced by coil orientation. We suggest that coil orientation should be considered when applying therapeutic TMS and propose several approaches to optimizing this potentially important treatment parameter.
Collapse
Affiliation(s)
- Andris Cerins
- Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Elizabeth H X Thomas
- Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tracy Barbour
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas Trapp
- University of Iowa, Department of Psychiatry, Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, Iowa City, Iowa
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua C Brown
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Leo Chen
- Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Tang SJ, Holle J, Dadario NB, Ryan M, Lesslar O, Teo C, Sughrue M, Yeung J. Personalized, parcel-guided non-invasive transcranial magnetic stimulation for the treatment of post-concussive syndrome: safety and proof of concept. Brain Inj 2024:1-11. [PMID: 38965876 DOI: 10.1080/02699052.2024.2371975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To determine the safety and proof of concept of a parcel-guided, repetitive Transcranial Magnetic Stimulation (rTMS) in patients who develop a heterogeneous array of symptoms, known collectively as post-concussive syndrome (PCS), following traumatic brain injury (TBI). METHODS We performed a retrospective review of off-label, individualized, parcel-guided rTMS in 19 patients from December 2020 to May 2023. Patients had at least one instance of mild, moderate, or severe TBI and developed symptoms not present prior to injury. rTMS targets were identified based on machine learning connectomic software using functional connectivity anomaly matrices compared to healthy controls. EuroQol (EQ-5D), as a measurement of quality of life, and additional questionnaires dependent on individual's symptoms were submitted prior to, after, and during follow-up from rTMS. RESULTS Nineteen patients showed improvement in EQ-5D and Rivermead Post Concussion Symptoms Questionnaires - 3 after treatment and follow-up. For nine patients who developed depression, five (55%) attained response and remission based on the Beck Depression Inventory after treatment. Eight of ten patients with anxiety had a clinically significant reduction in Generalized Anxiety Disorder-7 scores during follow-up. CONCLUSION Parcel-guided rTMS is safe and may be effective in reducing PCS symptoms following TBI and should incite further controlled studies.
Collapse
Affiliation(s)
- Si Jie Tang
- School of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | | | | - Jacky Yeung
- Cingulum Health, Sydney, Australia
- Department of Neurosurgery, Yale University School of Medicine institution, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Cash RFH, Zalesky A. Personalized and Circuit-Based Transcranial Magnetic Stimulation: Evidence, Controversies, and Opportunities. Biol Psychiatry 2024; 95:510-522. [PMID: 38040047 DOI: 10.1016/j.biopsych.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
The development of neuroimaging methodologies to map brain connectivity has transformed our understanding of psychiatric disorders, the distributed effects of brain stimulation, and how transcranial magnetic stimulation can be best employed to target and ameliorate psychiatric symptoms. In parallel, neuroimaging research has revealed that higher-order brain regions such as the prefrontal cortex, which represent the most common therapeutic brain stimulation targets for psychiatric disorders, show some of the highest levels of interindividual variation in brain connectivity. These findings provide the rationale for personalized target site selection based on person-specific brain network architecture. Recent advances have made it possible to determine reproducible personalized targets with millimeter precision in clinically tractable acquisition times. These advances enable the potential advantages of spatially personalized transcranial magnetic stimulation targeting to be evaluated and translated to basic and clinical applications. In this review, we outline the motivation for target site personalization, preliminary support (mostly in depression), convergent evidence from other brain stimulation modalities, and generalizability beyond depression and the prefrontal cortex. We end by detailing methodological recommendations, controversies, and notable alternatives. Overall, while this research area appears highly promising, the value of personalized targeting remains unclear, and dedicated large prospective randomized clinical trials using validated methodology are critical.
Collapse
Affiliation(s)
- Robin F H Cash
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
12
|
Lefaucheur JP. It is time to personalize rTMS targeting for the treatment of pain. Neurophysiol Clin 2024; 54:102950. [PMID: 38382139 DOI: 10.1016/j.neucli.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Jean-Pascal Lefaucheur
- Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, AP-HP, Créteil, France; UR ENT (EA4391), Faculté de Santé, Université Paris Est Créteil, Créteil, France.
| |
Collapse
|
13
|
Dadario NB, Sughrue ME, Doyen S. The Brain Connectome for Clinical Neuroscience. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:337-350. [PMID: 39523275 DOI: 10.1007/978-3-031-64892-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this chapter, we introduce the topic of the brain connectome, consisting of the complete set of both the structural and functional connections of the brain. Connectomic information and the large-scale network architecture of the brain provide an improved understanding of the organization and functional relevance of human cortical and subcortical anatomy. We discuss various analytical methods to both identify and interpret structural and functional connectivity data. In turn, we discuss how these data provide significant clinical promise for neurosurgery, neurology, and psychiatry in that more informed decisions can be made based on connectomic information. These data can provide safer and more informed network-based neurosurgery for brain tumor patients and even offer the possibility to modulate the brain connectome.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
14
|
Strege MV, Richey JA, Siegle GJ. Trying to name what doesn't change: Neural nonresponse to Cognitive Therapy for depression. Psychol Med 2024; 54:136-147. [PMID: 37191029 PMCID: PMC10651800 DOI: 10.1017/s0033291723000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Theoretical models of neural mechanisms underlying Cognitive Behavior Therapy (CBT) for major depressive disorder (MDD) propose that psychotherapy changes neural functioning of prefrontal cortical structures associated with cognitive-control processes (DeRubeis, Siegle, & Hollon, ); however, MDD is persistent and characterized by long-lasting vulnerabilities to recurrence after intervention, suggesting that underlying neural mechanisms of MDD remain despite treatment. It follows that identification of treatment-resistant aberrant neural processes in MDD may inform clinical and research efforts targeting sustained remission. Thus, we sought to identify brain regions showing aberrant neural functioning in MDD that either (1) fail to exhibit substantive change (nonresponse) or (2) exhibit functional changes (response) following CBT. METHODS To identify treatment-resistant neural processes (as well as neural processes exhibiting change after treatment), we collected functional magnetic resonance imaging (fMRI) data of MDD patients (n = 58) before and after CBT as well as never-depressed controls (n = 35) before and after a similar amount of time. We evaluated fMRI data using conjunction analyses, which utilized several contrast-based criteria to characterize brain regions showing both differences between patients and controls at baseline and nonresponse or response to CBT. RESULTS Findings revealed nonresponse in a cerebellar region and response in prefrontal and parietal regions. CONCLUSIONS Results are consistent with prior theoretical models of CBT's direct effect on cortical regulatory processes but expand on them with identification of additional regions (and associated neural systems) of response and nonresponse to CBT.
Collapse
Affiliation(s)
| | - John A. Richey
- Virginia Polytechnic Institute and State University, Department of Psychology
| | | |
Collapse
|
15
|
Tang SJ, Holle J, Dadario NB, Lesslar O, Teo C, Ryan M, Sughrue M, Yeung JT. Personalized, parcel-guided rTMS for the treatment of major depressive disorder: Safety and proof of concept. Brain Behav 2023; 13:e3268. [PMID: 37798655 PMCID: PMC10636393 DOI: 10.1002/brb3.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Not all patients with major depressive disorder (MDD) benefit from the US Food and Drug Administration-approved use of repetitive transcranial magnetic stimulation (rTMS) at the dorsolateral prefrontal cortex. We may be undertreating depression with this one-size-fits-all rTMS strategy. METHODS We present a retrospective review of targeted and connectome-guided rTMS in 26 patients from Cingulum Health from 2020 to 2023 with MDD or MDD with associated symptoms. rTMS was conducted by identifying multiple cortical targets based on anomalies in individual functional connectivity networks as determined by machine learning connectomic software. Quality of life assessed by the EuroQol (EQ-5D) score and depression symptoms assessed by the Beck Depression Inventory (BDI) were administered prior to treatment, directly after, and at a follow-up consultation. RESULTS Of the 26 patients treated with rTMS, 16 (62%) attained remission after treatment. Of the 19 patients who completed follow-up assessments after an average interval of 2.6 months, 11 (58%) responded to treatment and 13 (68%) showed significant remission. Between patients classified with or without treatment-resistant depression, there was no difference in BDI improvement. Additionally, there was significant improvement in quality of life after treatment and during follow-up compared to baseline. LIMITATIONS This review is retrospective in nature, so there is no control group to assess the placebo effect on patient outcomes. CONCLUSION The personalized, connectome-guided approach of rTMS is safe and may be effective for depression. This personalized rTMS treatment allows for co-treatment of multiple disorders, such as the comorbidity of depression and anxiety.
Collapse
Affiliation(s)
- Si Jie Tang
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | | | - Nicholas B. Dadario
- Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | | | - Jacky T. Yeung
- Cingulum HealthSydneyAustralia
- Department of NeurosurgeryYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
16
|
Ren J, Ren W, Zhou Y, Dahmani L, Duan X, Fu X, Wang Y, Pan R, Zhao J, Zhang P, Wang B, Yu W, Chen Z, Zhang X, Sun J, Ding M, Huang J, Xu L, Li S, Wang W, Xie W, Zhang H, Liu H. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: A randomized sham-controlled trial. Brain Stimul 2023; 16:1313-1321. [PMID: 37652135 DOI: 10.1016/j.brs.2023.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Aphasia affects approximately one-third of stroke patients and yet its rehabilitation outcomes are often unsatisfactory. More effective strategies are needed to promote recovery. OBJECTIVE We aimed to examine the efficacy and safety of the theta-burst stimulation (TBS) on the language area in the superior frontal gyrus (SFG) localized by personalized functional imaging, in facilitating post-stroke aphasia recovery. METHODS This randomized sham-controlled trial uses a parallel design (intermittent TBS [iTBS] in ipsilesional hemisphere vs. continuous TBS [cTBS] in contralesional hemisphere vs. sham group). Participants had aphasia symptoms resulting from their first stroke in the left hemisphere at least one month prior. Participants received three-week speech-language therapy coupled with either active or sham stimulation applied to the left or right SFG. The primary outcome was the change in Western Aphasia Battery-Revised (WAB-R) aphasia quotient after the three-week treatment. The secondary outcome was WAB-R aphasia quotient improvement after one week of treatment. RESULTS Ninety-seven patients were screened between January 2021 and January 2022, 45 of whom were randomized and 44 received intervention (15 in each active group, 14 in sham). Both iTBS (estimated difference = 14.75, p < 0.001) and cTBS (estimated difference = 13.43, p < 0.001) groups showed significantly greater improvement than sham stimulation after the 3-week intervention and immediately after one week of treatment (p's < 0.001). The adverse events observed were similar across groups. A seizure was recorded three days after the termination of the treatment in the iTBS group. CONCLUSION The stimulation showed high efficacy and SFG is a promising stimulation target for post-stroke language recovery.
Collapse
Affiliation(s)
- Jianxun Ren
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Weijing Ren
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Ying Zhou
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xinyu Duan
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Xiaoxuan Fu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yezhe Wang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Ruiqi Pan
- Neural Galaxy Inc., Beijing, 102206, China
| | - Jingdu Zhao
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China
| | - Ping Zhang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | - Bo Wang
- Department of Hearing and Language Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Weiyong Yu
- Department of Radiology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Zhenbo Chen
- Department of Radiology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, 100068, China
| | - Xin Zhang
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China
| | - Jian Sun
- Neural Galaxy Inc., Beijing, 102206, China
| | | | - Jianting Huang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Liu Xu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Shiyi Li
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China
| | | | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Hao Zhang
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Department of Neurorehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, 100069, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China.
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Dadario NB, Sughrue ME. The functional role of the precuneus. Brain 2023; 146:3598-3607. [PMID: 37254740 DOI: 10.1093/brain/awad181] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Recent advancements in computational approaches and neuroimaging techniques have refined our understanding of the precuneus. While previously believed to be largely a visual processing region, the importance of the precuneus in complex cognitive functions has been previously less familiar due to a lack of focal lesions in this deeply seated region, but also a poor understanding of its true underlying anatomy. Fortunately, recent studies have revealed significant information on the structural and functional connectivity of this region, and this data has provided a more detailed mechanistic understanding of the importance of the precuneus in healthy and pathologic states. Through improved resting-state functional MRI analyses, it has become clear that the function of the precuneus can be better understood based on its functional association with large scale brain networks. Dual default mode network systems have been well explained in recent years in supporting episodic memory and theory of mind; however, a novel 'para-cingulate' network, which is a subnetwork of the larger central executive network, with likely significant roles in self-referential processes and related psychiatric symptoms is introduced here and requires further clarification. Importantly, detailed anatomic studies on the precuneus structural connectivity inside and beyond the cingulate cortex has demonstrated the presence of large structural white matter connections, which provide an additional layer of meaning to the structural-functional significance of this region and its association with large scale brain networks. Together, the structural-functional connectivity of the precuneus has provided central elements which can model various neurodegenerative diseases and psychiatric disorders, such as Alzheimer's disease and depression.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 07102, USA
| | | |
Collapse
|
18
|
Chen R, Dadario NB, Cook B, Sun L, Wang X, Li Y, Hu X, Zhang X, Sughrue ME. Connectomic insight into unique stroke patient recovery after rTMS treatment. Front Neurol 2023; 14:1063408. [PMID: 37483442 PMCID: PMC10359072 DOI: 10.3389/fneur.2023.1063408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
An improved understanding of the neuroplastic potential of the brain has allowed advancements in neuromodulatory treatments for acute stroke patients. However, there remains a poor understanding of individual differences in treatment-induced recovery. Individualized information on connectivity disturbances may help predict differences in treatment response and recovery phenotypes. We studied the medical data of 22 ischemic stroke patients who received MRI scans and started repetitive transcranial magnetic stimulation (rTMS) treatment on the same day. The functional and motor outcomes were assessed at admission day, 1 day after treatment, 30 days after treatment, and 90 days after treatment using four validated standardized stroke outcome scales. Each patient underwent detailed baseline connectivity analyses to identify structural and functional connectivity disturbances. An unsupervised machine learning (ML) agglomerative hierarchical clustering method was utilized to group patients according to outcomes at four-time points to identify individual phenotypes in recovery trajectory. Differences in connectivity features were examined between individual clusters. Patients were a median age of 64, 50% female, and had a median hospital length of stay of 9.5 days. A significant improvement between all time points was demonstrated post treatment in three of four validated stroke scales utilized. ML-based analyses identified distinct clusters representing unique patient trajectories for each scale. Quantitative differences were found to exist in structural and functional connectivity analyses of the motor network and subcortical structures between individual clusters which could explain these unique trajectories on the Barthel Index (BI) scale but not on other stroke scales. This study demonstrates for the first time the feasibility of using individualized connectivity analyses in differentiating unique phenotypes in rTMS treatment responses and recovery. This personalized connectomic approach may be utilized in the future to better understand patient recovery trajectories with neuromodulatory treatment.
Collapse
Affiliation(s)
- Rong Chen
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Brennan Cook
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Lichun Sun
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaolong Wang
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yujie Li
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
| | - Michael E. Sughrue
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
- Omniscient Neurotechnology, Sydney, NSW, Australia
- Cingulum Health, Sydney, NSW, Australia
| |
Collapse
|
19
|
Tura A, Goya-Maldonado R. Brain connectivity in major depressive disorder: a precision component of treatment modalities? Transl Psychiatry 2023; 13:196. [PMID: 37296121 DOI: 10.1038/s41398-023-02499-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Major depressive disorder (MDD) is a very prevalent mental disorder that imposes an enormous burden on individuals, society, and health care systems. Most patients benefit from commonly used treatment methods such as pharmacotherapy, psychotherapy, electroconvulsive therapy (ECT), and repetitive transcranial magnetic stimulation (rTMS). However, the clinical decision on which treatment method to use remains generally informed and the individual clinical response is difficult to predict. Most likely, a combination of neural variability and heterogeneity in MDD still impedes a full understanding of the disorder, as well as influences treatment success in many cases. With the help of neuroimaging methods like functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), the brain can be understood as a modular set of functional and structural networks. In recent years, many studies have investigated baseline connectivity biomarkers of treatment response and the connectivity changes after successful treatment. Here, we systematically review the literature and summarize findings from longitudinal interventional studies investigating the functional and structural connectivity in MDD. By compiling and discussing these findings, we recommend the scientific and clinical community to deepen the systematization of findings to pave the way for future systems neuroscience roadmaps that include brain connectivity parameters as a possible precision component of the clinical evaluation and therapeutic decision.
Collapse
Affiliation(s)
- Asude Tura
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany.
| |
Collapse
|
20
|
Taylor H, Nicholas P, Hoy K, Bailey N, Tanglay O, Young IM, Dobbin L, Doyen S, Sughrue ME, Fitzgerald PB. Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation. J Affect Disord 2023; 329:539-547. [PMID: 36841298 DOI: 10.1016/j.jad.2023.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Despite efforts to improve targeting accuracy of the dorsolateral prefrontal cortex (DLPFC) as a repetitive transcranial magnetic stimulation (rTMS) target for Major Depressive Disorder (MDD), the heterogeneity in clinical response remains unexplained. OBJECTIVE We sought to compare the patterns of functional connectivity from the DLPFC treatment site in patients with MDD who were TMS responders to those who were TMS non-responders. METHODS Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI, and diffusion weighted imaging scans were obtained from 37 participants before they underwent a course of rTMS to left Brodmann area 46. A novel machine learning method was utilized to identify brain regions associated with each item of the Beck's Depression Inventory II (BDI-II), and for 26 participants who underwent rTMS treatment over the left Brodmann area 46, identify regions differentiating rTMS responders and non-responders. RESULTS Nine parcels of the Human Connectome Project Multimodal Parcellation Atlas matched to at least three items of the Beck's Depression Inventory II (BDI-II) as predictors of response to rTMS, with many in the temporal, parietal and cingulate cortices. Additionally, pre-treatment mapping for 17 items of the BDI-II demonstrated significant variability in symptom to parcel mapping. When parcels associated with symptom presence and symptom resolution were compared, 15 parcels were uniquely associated with resolution (potential targets), and 12 parcels were associated with both symptom presence and resolution (blockers or biomarkers). CONCLUSIONS Machine learning approaches show promise for the development of pathoanatomical diagnosis and treatment algorithms for MDD. Prospective studies are required to facilitate clinical translation.
Collapse
Affiliation(s)
- Hugh Taylor
- Omniscient Neurotechnology, Sydney, Australia
| | | | - Kate Hoy
- Central Clinical School Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Bionics Institute, 384-388 Albert St, East Melbourne, Vic 3002, Australia
| | - Neil Bailey
- Central Clinical School Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
21
|
Stöhrmann P, Godbersen GM, Reed MB, Unterholzner J, Klöbl M, Baldinger-Melich P, Vanicek T, Hahn A, Lanzenberger R, Kasper S, Kranz GS. Effects of bilateral sequential theta-burst stimulation on functional connectivity in treatment-resistant depression: First results. J Affect Disord 2023; 324:660-669. [PMID: 36603604 DOI: 10.1016/j.jad.2022.12.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previous studies suggest that transcranial magnetic stimulation exerts antidepressant effects by altering functional connectivity (FC). However, knowledge about this mechanism is still limited. Here, we aimed to investigate the effect of bilateral sequential theta-burst stimulation (TBS) on FC in treatment-resistant depression (TRD) in a sham-controlled longitudinal study. METHODS TRD patients (n = 20) underwent a three-week treatment of intermittent TBS of the left and continuous TBS of the right dorsolateral prefrontal cortex (DLPFC). Upon this trial's premature termination, 15 patients had received active TBS and five patients sham stimulation. Resting-state functional magnetic resonance imaging was performed at baseline and after treatment. FC (left and right DLPFC) was estimated for each participant, followed by group statistics (t-tests). Furthermore, depression scores were analyzed (linear mixed models analysis) and tested for correlation with FC. RESULTS Both groups exhibited reductions of depression scores, however, there was no significant main effect of group, or group and time. Anticorrelations between DLPFC and the subgenual cingulate cortex (sgACC) were observed for baseline FC, corresponding to changes in depression severity. Treatment did not significantly change DLPFC-sgACC connectivity, but significantly reduced FC between the left stimulation target and bilateral anterior insula. CONCLUSIONS Our data is compatible with previous reports on the relevance of anticorrelation between DLPFC and sgACC for treatment success. Furthermore, FC changes between left DLPFC and bilateral anterior insula highlight the effect of TBS on the salience network. LIMITATIONS Due to the limited sample size, results should be interpreted with caution and are of exploratory nature.
Collapse
Affiliation(s)
- Peter Stöhrmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria.
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria; Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Austria.
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; The State Key Laboratory of Brain & Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Young IM, Dadario NB, Tanglay O, Chen E, Cook B, Taylor HM, Crawford L, Yeung JT, Nicholas PJ, Doyen S, Sughrue ME. Connectivity Model of the Anatomic Substrates and Network Abnormalities in Major Depressive Disorder: A Coordinate Meta-Analysis of Resting-State Functional Connectivity. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Liu F, Chen C, Bai Z, Hong W, Wang S, Tang C. Specific subsystems of the inferior parietal lobule are associated with hand dysfunction following stroke: A cross-sectional resting-state fMRI study. CNS Neurosci Ther 2022; 28:2116-2128. [PMID: 35996952 PMCID: PMC9627383 DOI: 10.1111/cns.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIM The inferior parietal lobule (IPL) plays important roles in reaching and grasping during hand movements, but how reorganizations of IPL subsystems underlie the paretic hand remains unclear. We aimed to explore whether specific IPL subsystems were disrupted and associated with hand performance after chronic stroke. METHODS In this cross-sectional study, we recruited 65 patients who had chronic subcortical strokes and 40 healthy controls from China. Each participant underwent the Fugl-Meyer Assessment of Hand and Wrist and resting-state fMRI at baseline. We mainly explored the group differences in resting-state effective connectivity (EC) patterns for six IPL subregions in each hemisphere, and we correlated these EC patterns with paretic hand performance across the whole stroke group and stroke subgroups. Moreover, we used receiver operating characteristic curve analysis to distinguish the stroke subgroups with partially (PPH) and completely (CPH) paretic hands. RESULTS Stroke patients exhibited abnormal EC patterns with ipsilesional PFt and bilateral PGa, and five sensorimotor-parietal/two parietal-temporal subsystems were positively or negatively correlated with hand performance. Compared with CPH patients, PPH patients exhibited abnormal EC patterns with the contralesional PFop. The PPH patients had one motor-parietal subsystem, while the CPH patients had one sensorimotor-parietal and three parietal-occipital subsystems that were associated with hand performance. Notably, the EC strength from the contralesional PFop to the ipsilesional superior frontal gyrus could distinguish patients with PPH from patients with CPH. CONCLUSIONS The IPL subsystems manifest specific functional reorganization and are associated with hand dysfunction following chronic stroke.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation MedicineChengdu Second People's HospitalChengduChina
| | - ChangCheng Chen
- Department of Rehabilitation MedicineQingtian People's HospitalLishuiChina
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
| | - ChaoZheng Tang
- Capacity Building and Continuing Education CenterNational Health Commission of the People's Republic of ChinaBeijingChina
| |
Collapse
|
24
|
Briggs RG, Young IM, Dadario NB, Fonseka RD, Hormovas J, Allan P, Larsen ML, Lin YH, Tanglay O, Maxwell BD, Conner AK, Stafford JF, Glenn CA, Teo C, Sughrue ME. Parcellation-based tractographic modeling of the salience network through meta-analysis. Brain Behav 2022; 12:e2646. [PMID: 35733239 PMCID: PMC9304834 DOI: 10.1002/brb3.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The salience network (SN) is a transitory mediator between active and passive states of mind. Multiple cortical areas, including the opercular, insular, and cingulate cortices have been linked in this processing, though knowledge of network connectivity has been devoid of structural specificity. OBJECTIVE The current study sought to create an anatomically specific connectivity model of the neural substrates involved in the salience network. METHODS A literature search of PubMed and BrainMap Sleuth was conducted for resting-state and task-based fMRI studies relevant to the salience network according to PRISMA guidelines. Publicly available meta-analytic software was utilized to extract relevant fMRI data for the creation of an activation likelihood estimation (ALE) map and relevant parcellations from the human connectome project overlapping with the ALE data were identified for inclusion in our SN model. DSI-based fiber tractography was then performed on publicaly available data from healthy subjects to determine the structural connections between cortical parcellations comprising the network. RESULTS Nine cortical regions were found to comprise the salience network: areas AVI (anterior ventral insula), MI (middle insula), FOP4 (frontal operculum 4), FOP5 (frontal operculum 5), a24pr (anterior 24 prime), a32pr (anterior 32 prime), p32pr (posterior 32 prime), and SCEF (supplementary and cingulate eye field), and 46. The frontal aslant tract was found to connect the opercular-insular cluster to the middle cingulate clusters of the network, while mostly short U-fibers connected adjacent nodes of the network. CONCLUSION Here we provide an anatomically specific connectivity model of the neural substrates involved in the salience network. These results may serve as an empiric basis for clinical translation in this region and for future study which seeks to expand our understanding of how specific neural substrates are involved in salience processing and guide subsequent human behavior.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Parker Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micah L Larsen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.,Omniscient Neurotechnology, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Adu MK, Shalaby R, Chue P, Agyapong VIO. Repetitive Transcranial Magnetic Stimulation for the Treatment of Resistant Depression: A Scoping Review. Behav Sci (Basel) 2022; 12:195. [PMID: 35735405 PMCID: PMC9220129 DOI: 10.3390/bs12060195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Treatment-resistant depression (TRD) is associated with significant disability, and due to its high prevalence, it results in a substantive socio-economic burden at a global level. TRD is the inability to accomplish and/or achieve remission after an adequate trial of antidepressant treatments. Studies comparing repetitive transcranial magnetic stimulation (rTMS) with electroconvulsive therapy (ECT) and pharmacotherapy have revealed evidence of the therapeutic efficacy of rTMS in TRD. These findings suggest a crucial role for rTMS in the management of TRD. This article aims to conduct a comprehensive scoping review of the current literature concerning the use of rTMS and its therapeutic efficacy as a treatment modality for TRD. PubMed, PsycINFO, Medline, Embase, and Cinahl were used to identify important articles on rTMS for TRD. The search strategy was limited to English articles within the last five years of data publication. Articles were included if they reported on a completed randomized controlled trial (RCT) of rTMS intervention for TRD. The exclusion criteria involved studies with rTMS for the treatment of conditions other than TRD, and study and experimental protocols of rTMS on TRD. In total, 17 studies were eligible for inclusion in this review. The search strategy spanned studies published in the last five years, to the date of the data search (14 February 2022). The regional breakdown of the extracted studies was North American (n = 9), European (n = 5), Asian (n = 2) and Australian (n = 1). The applied frequencies of rTMS ranged from 5 Hz to 50 Hz, with stimulation intensities ranging from 80% MT to 120% MT. Overall, 16 out of the 17 studies suggested that rTMS treatment was effective, safe and tolerated in TRD. For patients with TRD, rTMS appears to provide significant benefits through the reduction of depressive symptoms, and while there is progressive evidence in support of the same, more research is needed in order to define standardized protocols of rTMS application in terms of localization, frequency, intensity, and pulse parameters.
Collapse
Affiliation(s)
- Medard Kofi Adu
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Reham Shalaby
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Pierre Chue
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
| | - Vincent I. O. Agyapong
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, AB T6G 2B7, Canada; (R.S.); (P.C.); (V.I.O.A.)
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
26
|
Noda Y, Kizaki J, Takahashi S, Mimura M. TMS Database Registry Consortium Research Project in Japan (TReC-J) for Future Personalized Psychiatry. J Pers Med 2022; 12:844. [PMID: 35629266 PMCID: PMC9147312 DOI: 10.3390/jpm12050844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The registry project led by the Japanese Society for Clinical Transcranial Magnetic Stimulation (TMS) Research aims to establish a centralized database of epidemiological, clinical, and biological data on TMS therapy for refractory psychiatric disorders, including treatment-resistant depression, as well as to contribute to the elucidation of the therapeutic mechanism of TMS therapy and to the validation of its efficacy by analyzing and evaluating these data in a systematic approach. The objective of this registry project is to collect a wide range of complex data linked to patients with various neuropsychiatric disorders who received TMS therapy throughout Japan, and to make effective use of these data to promote cross-sectional and longitudinal exploratory observational studies. Research utilizing this registry project will be conducted in a multicenter, non-invasive, retrospective, and prospective observational research study design, regardless of the framework of insurance medical care, private practice, or clinical research. Through the establishment of the registry, which aims to make use of data, we will advance the elucidation of treatment mechanisms and identification of predictors of therapeutic response to TMS therapy for refractory psychiatric disorders on a more real-world research basis. Furthermore, as a future vision, we aim to develop novel neuromodulation medical devices, algorithms for predicting treatment efficacy, and digital therapeutics based on the knowledge generated from this TMS registry database.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | | | - Shun Takahashi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Clinical Research and Education Center, Asakayama General Hospital, Osaka 590-0018, Japan
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| |
Collapse
|
27
|
Einstein EH, Dadario NB, Khilji H, Silverstein JW, Sughrue ME, D'Amico RS. Transcranial magnetic stimulation for post-operative neurorehabilitation in neuro-oncology: a review of the literature and future directions. J Neurooncol 2022; 157:435-443. [PMID: 35338454 DOI: 10.1007/s11060-022-03987-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a neuromodulation technology capable of targeted stimulation and inhibition of cortical areas. Repetitive TMS (rTMS) has demonstrated efficacy in the treatment of several neuropsychiatric disorders, and novel uses of rTMS for neurorehabilitation in patients with acute and chronic neurologic deficits are being investigated. However, studies to date have primarily focused on neurorehabilitation in stroke patients, with little data supporting its use for neurorehabilitation in brain tumor patients. METHODS We performed a review of the current available literature regarding uses of rTMS for neurorehabilitation in post-operative neuro-oncologic patients. RESULTS Data have demonstrated that rTMS is safe in the post-operative neuro-oncologic patient population, with minimal adverse effects and no documented seizures. The current evidence also demonstrates potential effectiveness in terms of neurorehabilitation of motor and language deficits. CONCLUSIONS Although data are overall limited, both safety and effectiveness have been demonstrated for the use of rTMS for neurorehabilitation in the neuro-oncologic population. More randomized controlled trials and specific comparisons of contralateral versus ipsilateral rTMS protocols should be explored. Further work may also focus on individualized, patient-specific TMS treatment protocols for optimal functional recovery.
Collapse
Affiliation(s)
- Evan H Einstein
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA.
| | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Hamza Khilji
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Justin W Silverstein
- Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
- Neuro Protective Solutions, New York, NY, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
28
|
Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, Veerapal C, Khan N, Cherian K, Felber E, Brown R, Choi E, King S, Pankow H, Bishop JH, Azeez A, Coetzee J, Rapier R, Odenwald N, Carreon D, Hawkins J, Chang M, Keller J, Raj K, DeBattista C, Jo B, Espil FM, Schatzberg AF, Sudheimer KD, Williams NR. Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am J Psychiatry 2022; 179:132-141. [PMID: 34711062 DOI: 10.1176/appi.ajp.2021.20101429] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Depression is the leading cause of disability worldwide, and half of patients with depression have treatment-resistant depression. Intermittent theta-burst stimulation (iTBS) is approved by the U.S. Food and Drug Administration for the treatment of treatment-resistant depression but is limited by suboptimal efficacy and a 6-week duration. The authors addressed these limitations by developing a neuroscience-informed accelerated iTBS protocol, Stanford neuromodulation therapy (SNT; previously referred to as Stanford accelerated intelligent neuromodulation therapy, or SAINT). This protocol was associated with a remission rate of ∼90% after 5 days of open-label treatment. Here, the authors report the results of a sham-controlled double-blind trial of SNT for treatment-resistant depression. METHODS Participants with treatment-resistant depression currently experiencing moderate to severe depressive episodes were randomly assigned to receive active or sham SNT. Resting-state functional MRI was used to individually target the region of the left dorsolateral prefrontal cortex most functionally anticorrelated with the subgenual anterior cingulate cortex. The primary outcome was score on the Montgomery-Åsberg Depression Rating Scale (MADRS) 4 weeks after treatment. RESULTS At the planned interim analysis, 32 participants with treatment-resistant depression had been enrolled, and 29 participants who continued to meet inclusion criteria received either active (N=14) or sham (N=15) SNT. The mean percent reduction from baseline in MADRS score 4 weeks after treatment was 52.5% in the active treatment group and 11.1% in the sham treatment group. CONCLUSIONS SNT, a high-dose iTBS protocol with functional-connectivity-guided targeting, was more effective than sham stimulation for treatment-resistant depression. Further trials are needed to determine SNT's durability and to compare it with other treatments.
Collapse
Affiliation(s)
- Eleanor J Cole
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Angela L Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Brandon S Bentzley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Katy H Stimpson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Romina Nejad
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Fahim Barmak
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Clive Veerapal
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Naushaba Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Emily Felber
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Randi Brown
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Elizabeth Choi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Sinead King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Heather Pankow
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - James H Bishop
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Azeezat Azeez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - John Coetzee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Rachel Rapier
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Nicole Odenwald
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - David Carreon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Jessica Hawkins
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Maureen Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Jennifer Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Kristin Raj
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Charles DeBattista
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Keith D Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| |
Collapse
|
29
|
Wu GR, Baeken C. Individual interregional perfusion between the left dorsolateral prefrontal cortex stimulation targets and the subgenual anterior cortex predicts response and remission to aiTBS treatment in medication-resistant depression: The influence of behavioral inhibition. Brain Stimul 2021; 15:182-189. [PMID: 34902623 DOI: 10.1016/j.brs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accelerated intermittent Theta Burst Stimulation (aiTBS) has been put forward as an effective treatment to alleviate depressive symptoms. Baseline functional connectivity (FC) patterns between the left dorsolateral prefrontal cortex (DLPFC) and the subgenual anterior cortex (sgACC) have gained a lot of attention as a potential biomarker for response. However, arterial spin labeling (ASL) - measuring regional cerebral blood flow - may allow a more straightforward physiological interpretation of such interregional functional connections. OBJECTIVES We investigated whether baseline covariance perfusion connectivity between the individually stimulated left DLPFC targets and sgACC could predict meaningful clinical outcome. Considering that individual characteristics may influence efficacy prediction, all patients were also assessed with the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scale. METHODS After baseline ASL scanning, forty-one medication-resistant depressed patients received twenty sessions of neuronavigated left DLPFC aiTBS in an accelerated sham-controlled crossover fashion, where all stimulation sessions were spread over four days (Trial registration: http://clinicaltrials.gov/show/NCT01832805). RESULTS Stronger individual baseline interregional covariance perfusion connectivity patterns predicted response and/or remission. Furthermore, responders and remitters with higher BIS scores displayed stronger baseline interregional perfusion connections. CONCLUSIONS Targeting the left DLPFC with aiTBS based on personal structural imaging data only may not be the most optimal method to enhance meaningful antidepressant responses. Individual baseline interregional perfusion connectivity could be an important added brain imaging method for individual optimization of more valid stimulation targets within the left DLPFC. Additional therapies dealing with behavioral inhibition may be warranted.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| |
Collapse
|