1
|
Wang Z, Wang L, Gao F, Dai Y, Liu C, Wu J, Wang M, Yan Q, Chen Y, Wang C, Wang L. Exploring cerebellar transcranial magnetic stimulation in post-stroke limb dysfunction rehabilitation: a narrative review. Front Neurosci 2025; 19:1405637. [PMID: 39963260 PMCID: PMC11830664 DOI: 10.3389/fnins.2025.1405637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
This review delves into the emerging field of cerebellar Transcranial Magnetic Stimulation (TMS) in the rehabilitation of limb dysfunction following a stroke. It synthesizes findings from randomized controlled trials and case studies, examining the efficacy, safety, and underlying mechanisms of cerebellar TMS. The review outlines advancements in TMS technologies, such as low-frequency repetitive TMS, intermittent Theta Burst Stimulation, and Cerebello-Motor Paired Associative Stimulation, and their integration with physiotherapy. The role of the cerebellum in motor control, the theoretical underpinnings of cerebellar stimulation on motor cortex excitability, and the indirect effects on cognition and motor learning are explored. Additionally, the review discusses current challenges, including coil types, safety, and optimal timing and modes of stimulation, and suggests future research directions. This comprehensive analysis highlights cerebellar TMS as a promising, though complex, approach in stroke rehabilitation, offering insights for its clinical optimization.
Collapse
Affiliation(s)
- Zhan Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Likai Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Gao
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongli Dai
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunqiao Liu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Jingyi Wu
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengbin Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Zeng Y, Ye Z, Zheng W, Wang J. Efficacy of Cerebellar Transcranial Magnetic Stimulation for Post-stroke Balance and Limb Motor Function Impairments: Meta-analyses of Random Controlled Trials and Resting-State fMRI Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1678-1696. [PMID: 38280142 DOI: 10.1007/s12311-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.
Collapse
Affiliation(s)
- Yuheng Zeng
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| | - Zujuan Ye
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Wanxin Zheng
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| |
Collapse
|
3
|
Fox-Hesling J, Wisseman D, Kantak S. Noninvasive cerebellar stimulation and behavioral interventions: A crucial synergy for post-stroke motor rehabilitation. NeuroRehabilitation 2024; 54:521-542. [PMID: 38943401 DOI: 10.3233/nre-230371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Improvement of functional movements after supratentorial stroke occurs through spontaneous biological recovery and training-induced reorganization of remnant neural networks. The cerebellum, through its connectivity with the cortex, brainstem and spinal cord, is actively engaged in both recovery and reorganization processes within the cognitive and sensorimotor systems. Noninvasive cerebellar stimulation (NiCBS) offers a safe, clinically feasible and potentially effective way to modulate the excitability of spared neural networks and promote movement recovery after supratentorial stroke. NiCBS modulates cerebellar connectivity to the cerebral cortex and brainstem, as well as influences the sensorimotor and frontoparietal networks. OBJECTIVE Our objective was twofold: (a) to conduct a scoping review of studies that employed NiCBS to influence motor recovery and learning in individuals with stroke, and (b) to present a theory-driven framework to inform the use of NiCBS to target distinct stroke-related deficits. METHODS A scoping review of current research up to August 2023 was conducted to determine the effect size of NiCBS effect on movement recovery of upper extremity function, balance, walking and motor learning in humans with stroke. RESULTS Calculated effect sizes were moderate to high, offering promise for improving upper extremity, balance and walking outcomes after stroke. We present a conceptual framework that capitalizes on cognitive-motor specialization of the cerebellum to formulate a synergy between NiCBS and behavioral interventions to target specific movement deficits. CONCLUSION NiCBS enhances recovery of upper extremity impairments, balance and walking after stroke. Physiologically-informed synergies between NiCBS and behavioral interventions have the potential to enhance recovery. Finally, we propose future directions in neurophysiological, behavioral, and clinical research to move NiCBS through the translational pipeline and augment motor recovery after stroke.
Collapse
Affiliation(s)
| | - Darrell Wisseman
- Moss Rehabilitation, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| | - Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Rodríguez-Nieto G, Seer C, Sidlauskaite J, Vleugels L, Van Roy A, Hardwick R, Swinnen S. Inhibition, Shifting and Updating: Inter and intra-domain commonalities and differences from an executive functions activation likelihood estimation meta-analysis. Neuroimage 2022; 264:119665. [PMID: 36202157 DOI: 10.1016/j.neuroimage.2022.119665] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Executive functions are higher-order mental processes that support goal-directed behavior. Among these processes, Inhibition, Updating, and Shifting have been considered core executive domains. In this meta-analysis, we comprehensively investigate the neural networks of these executive domains and we synthesize for the first time the neural convergences and divergences among the most frequently used executive paradigms within those domains. A systematic search yielded 1055 published neuroimaging studies (including 26,191 participants in total). Our study revealed that a fronto-parietal network was shared by the three main domains. Furthermore, we executed conjunction analyses among the paradigms of the same domain to extract the core distinctive components of the main executive domains. This approach showed that Inhibition and Shifting are characterized by a strongly lateralized neural activation in the right and left hemisphere, respectively. In addition, both networks overlapped with the Updating network but not with each other. Remarkably, our study detected heterogeneity among the paradigms from the same domain. More specifically, analysis of Inhibition tasks revealed differing activations for Response Inhibition compared to Interference Control paradigms, suggesting that Inhibition encompasses relatively heterogeneous sub-functions. Shifting analyses revealed a bilateral overlap of the Wisconsin Card Sorting Task with the Updating network, but this pattern was absent for Rule Switching and Dual Task paradigms. Moreover, our Updating meta-analyses revealed the neural signatures associated with the specific modules of the Working Memory model from Baddeley and Hitch. To our knowledge, this is the most comprehensive meta-analysis of executive functions to date. Its paradigm-driven analyses provide a unique contribution to a better understanding of the neural convergences and divergences among executive processes that are relevant for clinical applications, such as cognitive enhancement and neurorehabilitation interventions.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Lore Vleugels
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium; Institute of Neuroscience, UC Louvain, Av. Mounier 54, Bruxelles 1200, Belgium
| | - Anke Van Roy
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Robert Hardwick
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium; Institute of Neuroscience, UC Louvain, Av. Mounier 54, Bruxelles 1200, Belgium
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium.
| |
Collapse
|
5
|
Mental practice modulates functional connectivity between the cerebellum and the primary motor cortex. iScience 2022; 25:104397. [PMID: 35637729 PMCID: PMC9142644 DOI: 10.1016/j.isci.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Our brain has the extraordinary capacity to improve motor skills through mental practice. Conceptually, this ability is attributed to internal forward models, which are cerebellar neural networks that can predict the sensory consequences of motor commands. In our study, we employed single and dual-coil transcranial magnetic stimulations to probe the level of corticospinal excitability and cerebellar-brain inhibition, respectively, before and after a mental practice session or a control session. Motor skill (i.e., accuracy and speed) was measured using a sequential finger tapping-task. We found that mental practice enhanced both speed and accuracy. In parallel, the functional connectivity between the cerebellum and the primary motor cortex changed, with less inhibition from the first to the second. These findings reveal the existence of neuroplastic changes within the cerebellum, supporting the involvement of internal models after mental practice. The update of internal forward models involves cerebellar neural adaptations Mental practice is assumed to engage internal forward models Cerebellar-brain Inhibition was probed by TMS before and after mental practice Mental practice reduces Cerebellar-brain Inhibition and may update internal models
Collapse
|