1
|
Savvateev I, Grimm C, Markicevic M, Grandjean J, Sastre D, Gozzi A, Wenderoth N, Polania R, Zerbi V. Functional-based parcellation of the mouse prefrontal cortex for network perturbation analysis. Cell Rep 2025; 44:115622. [PMID: 40287941 DOI: 10.1016/j.celrep.2025.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The prefrontal cortex (PFC) is a brain region involved in higher-order cognitive processes such as attention, emotional regulation, and social behavior. However, the delineation of distinct subdivisions within the mouse PFC and their contributions to the broader brain network function remain debated. This study utilizes resting-state functional magnetic resonance imaging (MRI) from a cohort of 100 C57BL/6J wild-type mice to derive the functional connectivity (FC)-based parcellation of the mouse PFC with voxel resolution. Our findings reveal clusters that deviate from the established anatomical subdivisions within the cingulate and prelimbic areas while aligning in infralimbic and orbital cortices. Upon the chemogenetic perturbation of one of the clusters, FC perturbations occur only within the functional network linked to the targeted cluster and do not spread to neighboring anatomical areas or functional clusters. We propose FC-based parcellation as a valuable approach for tracking the site of activation and network impact of neurostimulation strategies.
Collapse
Affiliation(s)
- Iurii Savvateev
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Grimm
- Neuro-X Institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen 6525 AJ, the Netherlands; Department of Medical Imaging, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands
| | - David Sastre
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Joyce MKP, Uchendu S, Arnsten AFT. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Biol Psychiatry 2025; 97:359-371. [PMID: 38944141 PMCID: PMC11671620 DOI: 10.1016/j.biopsych.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| |
Collapse
|
3
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024; 29:3802-3813. [PMID: 38816586 PMCID: PMC11692567 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Sun J, Sun K, Chen L, Li X, Xu K, Guo C, Ma Y, Cao J, Zhang G, Hong Y, Wang Z, Gao S, Luo Y, Chen Q, Ye W, Yu X, Xiao X, Rong P, Yu C, Fang J. A predictive study of the efficacy of transcutaneous auricular vagus nerve stimulation in the treatment of major depressive disorder: An fMRI-based machine learning analysis. Asian J Psychiatr 2024; 98:104079. [PMID: 38838458 DOI: 10.1016/j.ajp.2024.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND In order to improve taVNS efficacy, the usage of fMRI to explore the predictive neuroimaging markers would be beneficial for screening the appropriate MDD population before treatment. METHODS A total of 86 MDD patients were recruited in this study, and all subjects were conducted with the clinical scales and resting-state functional magnetic resonance imaging (fMRI) scan before and after 8 weeks' taVNS treatment. A two-stage feature selection strategy combining Machine Learning and Statistical was used to screen out the critical brain functional connections (FC) that were significantly associated with efficacy prediction, then the efficacy prediction model was constructed for taVNS treating MDD. Finally, the model was validated by separated the responding and non-responding patients. RESULTS This study showed that taVNS produced promising clinical efficacy in the treatment of mild and moderate MDD. Eleven FCs were selected out and were found to be associated with the cortico-striatal-pallidum-thalamic loop, the hippocampus and cerebellum and the HAMD-17 scores. The prediction model was created based on these FCs for the efficacy prediction of taVNS treatment. The R-square of the conducted regression model for predicting HAMD-17 reduction rate is 0.44, and the AUC for classifying the responding and non-responding patients is 0.856. CONCLUSION The study demonstrates the validity and feasibility of combining neuroimaging and machine learning techniques to predict the efficacy of taVNS on MDD, and provides an effective solution for personalized and precise treatment for MDD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing 101300, China
| | - Kai Sun
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Bao'an Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province 518133, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guolei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shanshan Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weiyi Ye
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Peijing Rong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Changbin Yu
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China.
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Mishra A, Begley SL, Shah HA, Santhumayor BA, Ramdhani RA, Fenoy AJ, Schulder M. Why are clinical trials of deep brain stimulation terminated? An analysis of clinicaltrials.gov. World Neurosurg X 2024; 23:100378. [PMID: 38595675 PMCID: PMC11002890 DOI: 10.1016/j.wnsx.2024.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Background Although deep brain stimulation (DBS) has established uses for patients with movement disorders and epilepsy, it is under consideration for a wide range of neurologic and neuropsychiatric conditions. Objective To review successful and unsuccessful DBS clinical trials and identify factors associated with early trial termination. Methods The ClinicalTrials.gov database was screened for all studies related to DBS. Information regarding condition of interest, study aim, trial design, trial success, and, if applicable, reason for failure was collected. Trials were compared and logistic regression was utilized to identify independent factors associated with trial termination. Results Of 325 identified trials, 79.7% were successful and 20.3% unsuccessful. Patient recruitment, sponsor decision, and device issues were the most cited reasons for termination. 242 trials (74.5%) were interventional with 78.1% successful. There was a statistically significant difference between successful and unsuccessful trials in number of funding sources (p = 0.0375). NIH funding was associated with successful trials while utilization of other funding sources (academic institutions and community organizations) was associated with unsuccessful trials. 83 trials (25.5%) were observational with 84.0% successful; there were no statistically significant differences between successful and unsuccessful observational trials. Conclusion One in five clinical trials for DBS were found to be unsuccessful, most commonly due to patient recruitment difficulties. The source of funding was the only factor associated with trial success. As DBS research continues to grow, understanding the current state of clinical trials will help design successful future studies, thereby minimizing futile expenditures of time, cost, and patient engagement.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Sabrina L. Begley
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Harshal A. Shah
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Brandon A. Santhumayor
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Albert J. Fenoy
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Michael Schulder
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| |
Collapse
|
7
|
Wang F, Dai L, Wang T, Zhang Y, Wang Y, Zhao Y, Pan Y, Bian L, Li D, Zhan S, Lai Y, Voon V, Sun B. Presurgical structural imaging and clinical outcome in combined bed nucleus of the stria terminalis-nucleus accumbens deep brain stimulation for treatment-resistant depression. Gen Psychiatr 2024; 37:e101210. [PMID: 38912307 PMCID: PMC11191758 DOI: 10.1136/gpsych-2023-101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background Structural imaging holds great potential for precise targeting and stimulation for deep brain stimulation (DBS). The anatomical information it provides may serve as potential biomarkers for predicting the efficacy of DBS in treatment-resistant depression (TRD). Aims The primary aim is to identify preoperative imaging biomarkers that correlate with the efficacy of DBS in patients with TRD. Methods Preoperative imaging parameters were estimated and correlated with the 6-month clinical outcome of patients with TRD receiving combined bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS. White matter (WM) properties were extracted and compared between the response/non-response and remission/non-remission groups. Structural connectome was constructed and analysed using graph theory. Distances of the volume of activated tissue (VAT) to the main modulating tracts were also estimated to evaluate the correlations. Results Differences in fibre bundle properties of tracts, including superior thalamic radiation and reticulospinal tract, were observed between the remission and non-remission groups. Distance of the centre of the VAT to tracts connecting the ventral tegmental area and the anterior limb of internal capsule on the left side varied between the remission and non-remission groups (p=0.010, t=3.07). The normalised clustering coefficient (γ) and the small-world property (σ) in graph analysis correlated with the symptom improvement after the correction of age. Conclusions Presurgical structural alterations in WM tracts connecting the frontal area with subcortical regions, as well as the distance of the VAT to the modulating tracts, may influence the clinical outcome of BNST-NAc DBS. These findings provide potential imaging biomarkers for the DBS treatment for patients with TRD.
Collapse
Affiliation(s)
- Fengting Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Lulin Dai
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- Department of Psychiatry, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Tao Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- Fudan University Institute of Science and Technology for Brain-inspired Intelligence, Shanghai, China
| | - Yuhan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yijie Zhao
- Fudan University Institute of Science and Technology for Brain-inspired Intelligence, Shanghai, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yijie Lai
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Valerie Voon
- Fudan University Institute of Science and Technology for Brain-inspired Intelligence, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bomin Sun
- Department of Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
8
|
Leserri S, Segura-Amil A, Nowacki A, Debove I, Petermann K, Schäppi L, Preti MG, Van De Ville D, Pollo C, Walther S, Nguyen TAK. Linking connectivity of deep brain stimulation of nucleus accumbens area with clinical depression improvements: a retrospective longitudinal case series. Eur Arch Psychiatry Clin Neurosci 2024; 274:685-696. [PMID: 37668723 PMCID: PMC10994999 DOI: 10.1007/s00406-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.
Collapse
Affiliation(s)
- Simona Leserri
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland.
- ARTORG IGT, Murtenstrasse 50, 3008, Bern, Switzerland.
| |
Collapse
|
9
|
Wang J, Zhao W, Wang H, Leng H, Xue Q, Peng M, Min B, Jin X, Tan L, Gao K, Wang H. Brain-wide activation involved in 15 mA transcranial alternating current stimulation in patients with first-episode major depressive disorder. Gen Psychiatr 2024; 37:e101338. [PMID: 38476648 PMCID: PMC10928782 DOI: 10.1136/gpsych-2023-101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Background Although 15 mA transcranial alternating current stimulation (tACS) has a therapeutic effect on depression, the activations of brain structures in humans accounting for this tACS configuration remain largely unknown. Aims To investigate which intracranial brain structures are engaged in the tACS at 77.5 Hz and 15 mA, delivered via the forehead and the mastoid electrodes in the human brain. Methods Actual human head models were built using the magnetic resonance imagings of eight outpatient volunteers with drug-naïve, first-episode major depressive disorder and then used to perform the electric field distributions with SimNIBS software. Results The electric field distributions of the sagittal, coronal and axial planes showed that the bilateral frontal lobes, bilateral temporal lobes, hippocampus, cingulate, hypothalamus, thalamus, amygdala, cerebellum and brainstem were visibly stimulated by the 15 mA tACS procedure. Conclusions Brain-wide activation, including the cortex, subcortical structures, cerebellum and brainstem, is involved in the 15 mA tACS intervention for first-episode major depressive disorder. Our results indicate that the simultaneous involvement of multiple brain regions is a possible mechanism for its effectiveness in reducing depressive symptoms.
Collapse
Affiliation(s)
- Jie Wang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenfeng Zhao
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huang Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haixia Leng
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qing Xue
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mao Peng
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Baoquan Min
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiukun Jin
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liucen Tan
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Keming Gao
- Electroconvulsive Therapy, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Institute of Special Medical Sciences, School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Roalf DR, Figee M, Oathes DJ. Elevating the field for applying neuroimaging to individual patients in psychiatry. Transl Psychiatry 2024; 14:87. [PMID: 38341414 PMCID: PMC10858949 DOI: 10.1038/s41398-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Allawala A, Bijanki KR, Oswalt D, Mathura RK, Adkinson J, Pirtle V, Shofty B, Robinson M, Harrison MT, Mathew SJ, Goodman WK, Pouratian N, Sheth SA, Borton DA. Prefrontal network engagement by deep brain stimulation in limbic hubs. Front Hum Neurosci 2024; 17:1291315. [PMID: 38283094 PMCID: PMC10813208 DOI: 10.3389/fnhum.2023.1291315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Prefrontal circuits in the human brain play an important role in cognitive and affective processing. Neuromodulation therapies delivered to certain key hubs within these circuits are being used with increasing frequency to treat a host of neuropsychiatric disorders. However, the detailed neurophysiological effects of stimulation to these hubs are largely unknown. Here, we performed intracranial recordings across prefrontal networks while delivering electrical stimulation to two well-established white matter hubs involved in cognitive regulation and depression: the subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS). We demonstrate a shared frontotemporal circuit consisting of the ventromedial prefrontal cortex, amygdala, and lateral orbitofrontal cortex where gamma oscillations are differentially modulated by stimulation target. Additionally, we found participant-specific responses to stimulation in the dorsal anterior cingulate cortex and demonstrate the capacity for further tuning of neural activity using current-steered stimulation. Our findings indicate a potential neurophysiological mechanism for the dissociable therapeutic effects seen across the SCC and VC/VS targets for psychiatric neuromodulation and our results lay the groundwork for personalized, network-guided neurostimulation therapy.
Collapse
Affiliation(s)
- Anusha Allawala
- School of Engineering, Brown University, Providence, RI, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Meghan Robinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Matthew T. Harrison
- Division of Applied Mathematics, Brown University, Providence, RI, United States
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - David A. Borton
- School of Engineering, Brown University, Providence, RI, United States
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
12
|
Persad AR, Coote NR, Waterhouse K, McLeod S, Norton JA, Gould L, Vitali AM. Medial forebrain bundle stimulation after failed subcallosal cingulate deep brain stimulation for treatment-resistant depression: Efficacy of a dual deep brain stimulation system for depression. Brain Stimul 2024; 17:68-70. [PMID: 38159905 DOI: 10.1016/j.brs.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Amit R Persad
- Department of Neurological Surgery, Stanford University, Stanford, CA, USA
| | - Nicole R Coote
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen Waterhouse
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sara McLeod
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan A Norton
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Layla Gould
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aleksander M Vitali
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
13
|
Scherer M, Harmsen IE, Samuel N, Elias GJB, Germann J, Boutet A, MacLeod CE, Giacobbe P, Rowland NC, Lozano AM, Milosevic L. Oscillatory network markers of subcallosal cingulate deep brain stimulation for depression. Brain Stimul 2023; 16:1764-1775. [PMID: 38061548 PMCID: PMC10947774 DOI: 10.1016/j.brs.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Identifying functional biomarkers related to treatment success can aid in expediting therapy optimization, as well as contribute to a better understanding of the neural mechanisms of the treatment-resistant depression (TRD) and subcallosal cingulate deep brain stimulation (SCC-DBS). Magnetoencephalography data were obtained from 16 individuals with SCC-DBS for TRD and 25 healthy subjects. The first objective of the study was to identify region-specific oscillatory modulations that both (i) discriminate individuals with TRD (with SCC-DBS OFF) from healthy controls, and (ii) discriminate TRD treatment responders from non-responders (with SCC-DBS ON). The second objective of this work was to further explore the effects of stimulation intensity and frequency on oscillatory activity in the identified brain regions of interest. Oscillatory power analyses led to the identification of brain regions that differentiated responders from non-responders based on modulations of increased alpha (8-12 Hz) and decreased gamma (32-116 Hz) power within nodes of the default mode, central executive, and somatomotor networks, Broca's area, and lingual gyrus. Within these nodes, it was also found that low stimulation frequency had stronger effects on oscillatory modulation than increased stimulation intensity. The identified functional network biomarkers implicate modulation of TRD-related activity in brain regions involved in emotional control/processing, motor control, and the interaction between speech, vision, and memory, which have all been implicated in depression. These electrophysiological biomarkers have the potential to be used as functional proxies for therapy optimization. Additional stimulation parameter analyses revealed that oscillatory modulations can be strengthened by increasing stimulation intensity or reducing frequency, which may represent potential avenues of direction in non-responders.
Collapse
Affiliation(s)
- M Scherer
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - I E Harmsen
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Mitchell Goldhar MEG Unit, University Health Network, Toronto, Canada
| | - N Samuel
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - G J B Elias
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Germann
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - A Boutet
- Krembil Brain Institute, University Health Network, Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Canada
| | - C E MacLeod
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - P Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - N C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA; Murray Center for Research on Parkinson's Disease and Related Disorders, Medical University of South Carolina, Charleston, SC, USA
| | - A M Lozano
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| | - L Milosevic
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; KITE Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
14
|
Zeisler ZR, London L, Janssen WG, Fredericks JM, Elorette C, Fujimoto A, Zhan H, Russ BE, Clem RL, Hof PR, Stoll FM, Rudebeck PH. Single basolateral amygdala neurons in macaques exhibit distinct connectional motifs with frontal cortex. Neuron 2023; 111:3307-3320.e5. [PMID: 37857091 PMCID: PMC10593429 DOI: 10.1016/j.neuron.2023.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Microscopy and Advanced Bioimaging CoRE, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Megan Fredericks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Syosset, NY 11791, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University at Langone, One, 8 Park Avenue, New York, NY 10016, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Qiu L, Halpern CH, Barbosa DAN. Are we getting closer to offering deep brain stimulation for treatment-resistant depression in clinical practice? Mol Psychiatry 2023; 28:2627-2629. [PMID: 37106119 DOI: 10.1038/s41380-023-02078-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
18
|
Pellicano GR, Aafjes-van Doorn K, Anzolin A, Arnone D, Borghini G. Editorial: Use of neuroimaging techniques for the prevention, assessment, and treatment of mood disorders. Front Psychiatry 2023; 13:1091676. [PMID: 36683991 PMCID: PMC9846755 DOI: 10.3389/fpsyt.2022.1091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Gaia Romana Pellicano
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University, Rome, Italy
| | | | - Alessandra Anzolin
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gianluca Borghini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Alarie ME, Provenza NR, Avendano-Ortega M, McKay SA, Waite AS, Mathura RK, Herron JA, Sheth SA, Borton DA, Goodman WK. Artifact characterization and mitigation techniques during concurrent sensing and stimulation using bidirectional deep brain stimulation platforms. Front Hum Neurosci 2022; 16:1016379. [PMID: 36337849 PMCID: PMC9626519 DOI: 10.3389/fnhum.2022.1016379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Bidirectional deep brain stimulation (DBS) platforms have enabled a surge in hours of recordings in naturalistic environments, allowing further insight into neurological and psychiatric disease states. However, high amplitude, high frequency stimulation generates artifacts that contaminate neural signals and hinder our ability to interpret the data. This is especially true in psychiatric disorders, for which high amplitude stimulation is commonly applied to deep brain structures where the native neural activity is miniscule in comparison. Here, we characterized artifact sources in recordings from a bidirectional DBS platform, the Medtronic Summit RC + S, with the goal of optimizing recording configurations to improve signal to noise ratio (SNR). Data were collected from three subjects in a clinical trial of DBS for obsessive-compulsive disorder. Stimulation was provided bilaterally to the ventral capsule/ventral striatum (VC/VS) using two independent implantable neurostimulators. We first manipulated DBS amplitude within safe limits (2–5.3 mA) to characterize the impact of stimulation artifacts on neural recordings. We found that high amplitude stimulation produces slew overflow, defined as exceeding the rate of change that the analog to digital converter can accurately measure. Overflow led to expanded spectral distortion of the stimulation artifact, with a six fold increase in the bandwidth of the 150.6 Hz stimulation artifact from 147–153 to 140–180 Hz. By increasing sense blank values during high amplitude stimulation, we reduced overflow by as much as 30% and improved artifact distortion, reducing the bandwidth from 140–180 Hz artifact to 147–153 Hz. We also identified artifacts that shifted in frequency through modulation of telemetry parameters. We found that telemetry ratio changes led to predictable shifts in the center-frequencies of the associated artifacts, allowing us to proactively shift the artifacts outside of our frequency range of interest. Overall, the artifact characterization methods and results described here enable increased data interpretability and unconstrained biomarker exploration using data collected from bidirectional DBS devices.
Collapse
Affiliation(s)
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Michelle Avendano-Ortega
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sarah A. McKay
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ayan S. Waite
- Brown University School of Engineering, Providence, RI, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey A. Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - David A. Borton
- Brown University School of Engineering, Providence, RI, United States
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence, RI, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Wayne K. Goodman,
| |
Collapse
|
21
|
Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH. Deep Brain Stimulation for Depression. Neurotherapeutics 2022; 19:1229-1245. [PMID: 35817944 PMCID: PMC9587188 DOI: 10.1007/s13311-022-01270-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation has been extensively studied as a therapeutic option for treatment-resistant depression (TRD). DBS across different targets is associated with on average 60% response rates in previously refractory chronically depressed patients. However, response rates vary greatly between patients and between studies and often require extensive trial-and-error optimizations of stimulation parameters. Emerging evidence from tractography imaging suggests that targeting combinations of white matter tracts, rather than specific grey matter regions, is necessary for meaningful antidepressant response to DBS. In this article, we review efficacy of various DBS targets for TRD, which networks are involved in their therapeutic effects, and how we can use this information to improve targeting and programing of DBS for individual patients. We will also highlight how to integrate these DBS network findings into developing adaptive stimulation and optimal trial designs.
Collapse
Affiliation(s)
- Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Georgia, GA, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Bederson
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Yu Q, Guo X, Zhu Z, Feng C, Jiang H, Zheng Z, Zhang J, Zhu J, Wu H. White Matter Tracts Associated With Deep Brain Stimulation Targets in Major Depressive Disorder: A Systematic Review. Front Psychiatry 2022; 13:806916. [PMID: 35573379 PMCID: PMC9095936 DOI: 10.3389/fpsyt.2022.806916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as a last-resort treatment for major depressive disorder (MDD) and has shown potential antidepressant effects in multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and suboptimal, with 30-70% responder rates. The currently used DBS targets for MDD are not individualized, which may account for suboptimal effect. Objective We aim to review and summarize currently used DBS targets for MDD and relevant diffusion tensor imaging (DTI) studies. Methods A literature search of the currently used DBS targets for MDD, including clinical trials, case reports and anatomy, was performed. We also performed a literature search on DTI studies in MDD. Results A total of 95 studies are eligible for our review, including 51 DBS studies, and 44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter tracts with microstructural abnormalities reported in MDD. These DBS targets modulate different brain regions implicated in distinguished dysfunctional brain circuits, consistent with DTI findings in MDD. Conclusions In this review, we propose a taxonomy of DBS targets for MDD. These results imply that clinical characteristics and white matter tracts abnormalities may serve as valuable supplements in future personalized DBS for MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Vetkas A, Germann J, Elias G, Loh A, Boutet A, Yamamoto K, Sarica C, Samuel N, Milano V, Fomenko A, Santyr B, Tasserie J, Gwun D, Jung HH, Valiante T, Ibrahim GM, Wennberg R, Kalia SK, Lozano AM. Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Commun 2022; 4:fcac092. [PMID: 35611305 PMCID: PMC9123846 DOI: 10.1093/braincomms/fcac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Deep brain stimulation is a treatment option for patients with drug-resistant epilepsy. The precise mechanism of neuromodulation in epilepsy is unknown, and biomarkers are needed for optimizing treatment. The aim of this study was to describe the neural network associated with deep brain stimulation targets for epilepsy and to explore its potential application as a novel biomarker for neuromodulation. Using seed-to-voxel functional connectivity maps, weighted by seizure outcomes, brain areas associated with stimulation were identified in normative resting state functional scans of 1000 individuals. To pinpoint specific regions in the normative epilepsy deep brain stimulation network, we examined overlapping areas of functional connectivity between the anterior thalamic nucleus, centromedian thalamic nucleus, hippocampus and less studied epilepsy deep brain stimulation targets. Graph network analysis was used to describe the relationship between regions in the identified network. Furthermore, we examined the associations of the epilepsy deep brain stimulation network with disease pathophysiology, canonical resting state networks and findings from a systematic review of resting state functional MRI studies in epilepsy deep brain stimulation patients. Cortical nodes identified in the normative epilepsy deep brain stimulation network were in the anterior and posterior cingulate, medial frontal and sensorimotor cortices, frontal operculum and bilateral insulae. Subcortical nodes of the network were in the basal ganglia, mesencephalon, basal forebrain and cerebellum. Anterior thalamic nucleus was identified as a central hub in the network with the highest betweenness and closeness values, while centromedian thalamic nucleus and hippocampus showed average centrality values. The caudate nucleus and mammillothalamic tract also displayed high centrality values. The anterior cingulate cortex was identified as an important cortical hub associated with the effect of deep brain stimulation in epilepsy. The neural network of deep brain stimulation targets shared hubs with known epileptic networks and brain regions involved in seizure propagation and generalization. Two cortical clusters identified in the epilepsy deep brain stimulation network included regions corresponding to resting state networks, mainly the default mode and salience networks. Our results were concordant with findings from a systematic review of resting state functional MRI studies in patients with deep brain stimulation for epilepsy. Our findings suggest that the various epilepsy deep brain stimulation targets share a common cortico-subcortical network, which might in part underpin the antiseizure effects of stimulation. Interindividual differences in this network functional connectivity could potentially be used as biomarkers in selection of patients, stimulation parameters and neuromodulation targets.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Neurology clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hyun Ho Jung
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taufik Valiante
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - George M Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
| |
Collapse
|
24
|
Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, Nemoto K, Taniike M, Kagitani-Shimono K. Abnormal White Matter Microstructure in the Limbic System Is Associated With Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders. Front Neurol 2022; 13:782479. [PMID: 35359647 PMCID: PMC8963953 DOI: 10.3389/fneur.2022.782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTuberous sclerosis complex (TSC) is a genetic disease that arises from TSC1 or TSC2 abnormalities and induces the overactivation of the mammalian/mechanistic target of rapamycin pathways. The neurological symptoms of TSC include epilepsy and tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Although TAND affects TSC patients' quality of life, the specific region in the brain associated with TAND remains unknown. We examined the association between white matter microstructural abnormalities and TAND, using diffusion tensor imaging (DTI).MethodsA total of 19 subjects with TSC and 24 age-matched control subjects were enrolled. Tract-based spatial statistics (TBSS) were performed to assess group differences in fractional anisotropy (FA) between the TSC and control groups. Atlas-based association analysis was performed to reveal TAND-related white matter in subjects with TSC. Multiple linear regression was performed to evaluate the association between TAND and the DTI parameters; FA and mean diffusivity in seven target regions and projection fibers.ResultsThe TBSS showed significantly reduced FA in the right hemisphere and particularly in the inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), and genu of corpus callosum (CC) in the TSC group relative to the control group. In the association analysis, intellectual disability was widely associated with all target regions. In contrast, behavioral problems and autistic features were associated with the limbic system white matter and anterior limb of the internal capsule (ALIC) and CC.ConclusionThe disruption of white matter integrity may induce underconnectivity between cortical and subcortical regions. These findings suggest that TANDs are not the result of an abnormality in a specific brain region, but rather caused by connectivity dysfunction as a network disorder. This study indicates that abnormal white matter connectivity including the limbic system is relevant to TAND. The analysis of brain and behavior relationship is a feasible approach to reveal TAND related white matter and neural networks. TAND should be carefully assessed and treated at an early stage.
Collapse
Affiliation(s)
- Akemi Sato
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Kuriko Kagitani-Shimono
| |
Collapse
|
25
|
Sun J, Ma Y, Du Z, Wang Z, Guo C, Luo Y, Chen L, Gao D, Li X, Xu K, Hong Y, Xu F, Yu X, Xiao X, Fang J, Hou X. Immediate Modulation of Transcutaneous Auricular Vagus Nerve Stimulation in Patients With Treatment-Resistant Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2022; 13:923783. [PMID: 35845466 PMCID: PMC9284008 DOI: 10.3389/fpsyt.2022.923783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous studies found that transcutaneous auricular vagus nerve stimulation (taVNS) was clinically effective in treating a case of treatment-resistant depression (TRD). However, the brain neural mechanisms underlying the immediate effects of taVNS treatment for TRD have not been elucidated. MATERIALS AND METHODS Differences in the amplitude of low-frequency fluctuations (ALFF) between TRD and healthy control (HC) groups were observed. The TRD group was treated with taVNS for 30 min, and changes in ALFF in the TRD group before and after immediate treatment were observed. The ALFF brain regions altered by taVNS induction were used as regions of interest to analyze whole-brain functional connectivity (FC) changes in the TRD group. RESULTS A total of 44 TRD patients and 44 HCs completed the study and were included in the data analysis. Compared with the HC group, the TRD group had increased ALFF in the left orbital area of the middle frontal gyrus. After taVNS treatment, ALFF in the left orbital area of the middle frontal gyrus and right middle frontal gyrus decreased in the TRD group, while ALFF in the right orbital area of the superior frontal gyrus increased. The FC in the left orbital area of the middle frontal gyrus with left middle frontal gyrus and the right inferior occipital gyrus was significantly increased. CONCLUSION Transcutaneous auricular vagus nerve stimulation demonstrates immediate modulation of functional activity in the emotional network, cognitive control network, and visual processing cortex, and may be a potential brain imaging biomarker for the treatment of TRD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengquan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|