1
|
Barzegar S, Kakies CFM, Ciupercӑ D, Wischnewski M. Transcranial alternating current stimulation for investigating complex oscillatory dynamics and interactions. Int J Psychophysiol 2025; 212:112579. [PMID: 40315997 DOI: 10.1016/j.ijpsycho.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neural oscillations play a fundamental role in human cognition and behavior. While electroencephalography (EEG) and related methods provide precise temporal recordings of these oscillations, they are limited in their ability to generate causal conclusions. Transcranial alternating current stimulation (tACS) has emerged as a promising non-invasive neurostimulation technique to modulate neural oscillations, which offers insights into their functional role and relation to human cognition and behavior. Originally, tACS is applied between two or more electrodes at a given frequency. However, recent advances have aimed to apply different current waveforms to target specific oscillatory dynamics. This systematic review evaluates the efficacy of non-standard tACS applications designed to investigate oscillatory patterns beyond simple sinusoidal stimulation. We categorized these approaches into three key domains: (1) phase synchronization techniques, including in-phase, anti-phase, and traveling wave stimulation; (2) non-sinusoidal tACS, which applies alternative waveforms such as composite, broadband or triangular oscillations; and (3) amplitude-modulated tACS and temporal interference stimulation, which allow for concurrent EEG recordings and deeper cortical targeting. While a number of studies provide evidence for the added value of these non-standard tACS procedures, other studies show opposing or null findings. Crucially, the number of studies for most applications is currently low, and as such, the goal of this review is to highlight both the promise and current limitations of these techniques, providing a foundation for future research in neurostimulation.
Collapse
Affiliation(s)
- Samira Barzegar
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Carolina F M Kakies
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Dorina Ciupercӑ
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Venugopal R, Sasidharan A, Bhowmick K, Nagaraj N, Udupa K, John JP, Kutty BM. Personalized Theta Transcranial Alternating Current Stimulation and Gamma Transcranial Alternating Current Stimulation Bring Differential Neuromodulatory Effects on the Resting Electroencephalogram: Characterizing the Temporal, Spatial, and Spectral Dimensions of Transcranial Alternating Current Stimulation. Neuromodulation 2025; 28:425-433. [PMID: 39425734 DOI: 10.1016/j.neurom.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The neuromodulatory effects of transcranial alternating current stimulation (tACS) on electroencephalogram (EEG) dynamics are quite heterogenous. The primary objective of the study is to comprehensively characterize the effects of two tACS protocols on resting-state EEG. MATERIALS AND METHODS A total of 36 healthy participants were recruited and were randomized into three groups. Two groups received either personalized theta (4-8 Hz) or gamma (40 Hz) stimulation bilaterally in the frontal regions for 20 minutes (4 minutes ON, 1 minute OFF, four cycles). The third group performed relaxed breath watching for 20 minutes. Artifact-free, 1-minute EEG segments from the baseline, during tACS, and after stimulation resting EEG were characterized to see the effects of tACS. Threshold-free cluster enhanced permutation tests (for spectral measures) and two-way mixed analysis of variance (for aperiodic slope) were used for statistical inferences. RESULTS Current modeling simulation using ROAST with preset parameters (800 μA, AF3 AF4 locations) showed that induced electric fields can activate frontal cortical regions. During the stimulation period, personalized theta tACS entrained theta band power in the centro-parietal areas. There was a compensatory power decrease in the beta and gamma bands after theta tACS. No entrainment effects were observed for gamma tACS during stimulation, but a significant entrainment was observed in the theta and beta bands in the parieto-occipital regions after stimulation. The delta band power decreased in the central regions. No spectral modulations were seen after breath watching. The spectral slope, which measures aperiodic activity, was not affected by either breath watching or tACS. CONCLUSIONS Characterizing the effects of multiple tACS protocols is critical to effectively target specific neural oscillatory patterns and to personalize the protocols. The study can be extended to target specific oscillatory patterns associated with cognitive deficits in neuro-psychiatric conditions.
Collapse
Affiliation(s)
- Rahul Venugopal
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Arun Sasidharan
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kankana Bhowmick
- Indian Institute of Science Education and Research, Mohali, India
| | - Nithin Nagaraj
- Consciousness Studies Programme, School of Humanities, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - John P John
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| |
Collapse
|
3
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Murray A, Soulières I, Saint-Amour D. No aftereffect of transcranial alternating current stimulation (tACS) on theta activity during an inter-sensory selective attention task. Int J Psychophysiol 2025; 210:112539. [PMID: 40010408 DOI: 10.1016/j.ijpsycho.2025.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Selective attention is essential to filter the constant flow of sensory information reaching the brain. The contribution of theta neuronal oscillations to attentional function has been the subject of several electrophysiological studies, yet no causal relationship has been established between theta rhythms and selective attention mechanisms. OBJECTIVE AND HYPOTHESES We aimed to clarify the causal role of theta oscillations in inter-sensory selective attention processes by combining transcranial alternating current stimulation (tACS) and electrophysiology (EEG) techniques. We hypothesized that modulation of theta activity by tACS enhances selective attention, with greater behavioral efficiency and theta power over fronto-central regions after theta-tACS compared to control conditions. METHODS In a double-blinded within-subject study conducted in young adults (n = 20), three stimulation conditions were applied prior to a cued inter-sensory (auditory and visual) selective attention task. The frequency of theta stimulation was individualized to match the endogenous theta peak of each participant. In addition to a sham condition, stimulation at an off-target frequency (20 Hz) was also applied. We analyzed behavioral efficiency and variability measures and performed spectral and time-frequency power analyses. RESULTS No statistically significant differences in task performance or theta EEG activity were found between theta-tACS and control-tACS conditions (ps > 0.05). CONCLUSIONS The results of our study suggest that theta-tACS did not modulate performance or offline oscillations in the context of inter-sensory attention. These findings challenge the design of tACS protocols for future studies aiming to understand the contribution of theta oscillations in attentional processes.
Collapse
Affiliation(s)
- Audrey Murray
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada; Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Montréal, Canada
| | - Isabelle Soulières
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Montréal, Canada
| | - Dave Saint-Amour
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
| |
Collapse
|
5
|
Johari K, Tabari F. HD-tACS over the left frontal aslant tract entrains theta activity associated with speech motor control. Brain Res 2025; 1850:149434. [PMID: 39743033 DOI: 10.1016/j.brainres.2024.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Transient disruption or permanent damage to the left Frontal Aslant Tract (FAT) is associated with deficits in speech production. The present study examined the application of theta (4 Hz) high-definition transcranial alternating current stimulation (HD-tACS) over the left SMA and IFG -as a part of FAT- as a potential multisite protocol to modulate neural and behavioral correlates of speech motor control. Twenty-one young adults participated in three counterbalanced sessions in which they received in-phase, anti-phase, and sham theta HD-tACS. In each session, 4 Hz stimulation was applied over the left IFG and SMA, and subsequently EEG data was recorded while participants performed a speech Go/No-Go task. Relative to sham and anti-phase, in-phase HD-tACS significantly improved speech reaction time. Neural data showed an increase in the power of frontal theta activity prior to speech initiation for the in-phase condition compared to sham. Moreover, in-phase stimulation increased the phase synchrony of theta activity between the left central and frontal electrodes. For speech inhibition, the power of theta activity increased following the in-phase condition over frontocentral electrodes. Furthermore, the in-phase condition enhanced the connectivity between the left central and frontal electrodes. Overall findings suggest that in-phase theta HD-tACS of FAT enhanced the neural markers of cognitive control required for motor preparation and inhibition during a speech task and have translational implications.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA.
| | - Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Sanchez-Romero R, Akyuz S, Krekelberg B. EFMouse: a Matlab toolbox to model stimulation-induced electric fields in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.605227. [PMID: 39091807 PMCID: PMC11291114 DOI: 10.1101/2024.07.25.605227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcome experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of non-invasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here, we introduce EFMouse, a toolbox that extends previous approaches to model intracranial electric fields and is optimized to generate predictions that can be tested with in-vivo intracranial recordings in mice. Although the EFMouse toolbox has general applicability and could be used to predict intracranial fields for any electrical stimulation study using mice, we illustrate its usage by comparing fields in a tES high-density multi-electrode montage with a more traditional two-electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability. The EFMouse toolbox is publicly available at https://github.com/klabhub/EFMouse.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Sibel Akyuz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
7
|
Yang M, Li Z, Pan F, Wu S, Jia X, Wang R, Ji L, Li W, Li C. Alpha tACS on Parieto-Occipital Cortex Mitigates Motion Sickness Based on Multiple Physiological Observation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2398-2407. [PMID: 38949929 DOI: 10.1109/tnsre.2024.3419753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Approximately one third of the population is prone to motion sickness (MS), which is associated with the dysfunction in the integration of sensory inputs. Transcranial alternating current stimulation (tACS) has been widely used to modulate neurological functions by affecting neural oscillation. However, it has not been applied in the treatment of motion sickness. This study aims to investigate changes in brain oscillations during exposure to MS stimuli and to further explore the potential impact of tACS with the corresponding frequency and site on MS symptoms. A total of 19 subjects were recruited to be exposed to Coriolis stimuli to complete an inducing session. After that, they were randomly assigned to tACS stimulation group or sham stimulation group to complete a stimulation session. Electroencephalography (EEG), electrocardiogram, and galvanic skin response were recorded during the experiment. All the subjects suffering from obvious MS symptoms after inducing session were observed that alpha power of four channels of parieto-occipital lobe significantly decreased (P7: t =3.589, p <0.001; P8: t =2.667, p <0.05; O1: t =3.556, p <0.001; O2: t =2.667, p <0.05). Based on this, tACS group received the tACS stimulation at 10Hz from Oz to CPz. Compared to sham group, tACS stimulation significantly improved behavioral performance and entrained the alpha oscillation in individuals whose alpha power decrease during the inducing session. The findings show that parieto-occipital alpha oscillation plays a critical role in the integration of sensory inputs, and alpha tACS on parieto-occipital can become a potential method to mitigate MS symptoms.
Collapse
|
8
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
9
|
Ociepka M, Chinta SR, Basoń P, Chuderski A. No effects of the theta-frequency transcranial electrical stimulation for recall, attention control, and relation integration in working memory. Front Hum Neurosci 2024; 18:1354671. [PMID: 38439936 PMCID: PMC10910036 DOI: 10.3389/fnhum.2024.1354671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Recent studies have suggested that transcranial alternating current stimulation (tACS), and especially the theta-frequency tACS, can improve human performance on working memory tasks. However, evidence to date is mixed. Moreover, the two WM tasks applied most frequently, namely the n-back and change-detection tasks, might not constitute canonical measures of WM capacity. Method In a relatively large sample of young healthy participants (N = 62), we administered a more canonical WM task that required stimuli recall, as well as we applied two WM tasks tapping into other key WM functions: attention control (the antisaccade task) and relational integration (the graph mapping task). The participants performed these three tasks three times: during the left frontal 5.5-Hz and the left parietal 5.5-Hz tACS session as well as during the sham session, with a random order of sessions. Attentional vigilance and subjective experience were monitored. Results For each task administered, we observed significant gains in accuracy neither for the frontal tACS session nor for the parietal tACS session, as compared to the sham session. By contrast, the scores on each task positively inter-correlated across the three sessions. Discussion The results suggest that canonical measures of WM capacity are strongly stable in time and hardly affected by theta-frequency tACS. Either the tACS effects observed in the n-back and change detection tasks do not generalize onto other WM tasks, or the tACS method has limited effectiveness with regard to WM, and might require further methodological advancements.
Collapse
Affiliation(s)
- Michał Ociepka
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | | - Paweł Basoń
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
10
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
11
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Modulating risk-taking behavior with theta-band tACS. Neuroimage 2023; 283:120422. [PMID: 37884165 DOI: 10.1016/j.neuroimage.2023.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Although risk is prevalent in decision-making, the specific neural processes underlying risk-taking behavior remain unclear. Previous studies have suggested that frontal theta-band activity plays a crucial role in modulating risk-taking behavior. The functional relevance of theta in risk-taking behavior is yet to be clearly established and studies using noninvasive brain stimulation have yielded inconsistent findings. We aimed to investigate this relevance using transcranial alternating current stimulation (tACS) over right or left dorsolateral prefrontal cortex (DLPFC). We also studied the influence of stimulation intensity on risk-taking behavior and electrophysiological effects. We applied theta-band (6.5 Hz) tACS over the left (F3) and right (F4) DLPFC with lower (1.5 mA) and higher (3 mA) tACS intensities. We employed a single-blinded, sham-controlled, within-subject design and combined tACS with electroencephalography (EEG) measurements and the Maastricht Gambling Task (MGT) to elicit and evaluate risk-taking behavior. Our results show an increase in risk-taking behavior after left DLPFC stimulation at both intensities and a reduction of risk-taking behavior after 3 mA (and not 1.5 mA) right DLPFC stimulation compared to sham. Further analyses showed a negative correlation between resting-state frontal theta-power and risk-taking behavior. Overall, frontal theta-power was increased after left, but not right, theta-band tACS independent of stimulation intensity. Our findings confirm the functional relevance of frontal theta-band activity in decision-making under risk and the differential role of left and right DLPFC. We also were able to show that stimulation intensity did have an effect on behavioral responses, namely risk-taking behavior. Significant right hemisphere stimulation effects were observed only after high-intensity stimulation. Nevertheless, electrophysiological effects were only significant after left DLPFC stimulation, regardless of tACS intensity. Furthermore, the results indicate the role of the baseline frontal theta-power in the direction of behavioral effects after theta-band tACS.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands; BISS - Brightlands Institute for Smart Society, Maastricht University, Heerlen, the Netherlands; Netspar - Network for Studies on Pension, Aging and Retirement
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| |
Collapse
|
12
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Cota VR, Cançado SAV, Moraes MFD. On temporal scale-free non-periodic stimulation and its mechanisms as an infinite improbability drive of the brain's functional connectogram. Front Neuroinform 2023; 17:1173597. [PMID: 37293579 PMCID: PMC10244597 DOI: 10.3389/fninf.2023.1173597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Rationalized development of electrical stimulation (ES) therapy is of paramount importance. Not only it will foster new techniques and technologies with increased levels of safety, efficacy, and efficiency, but it will also facilitate the translation from basic research to clinical practice. For such endeavor, design of new technologies must dialogue with state-of-the-art neuroscientific knowledge. By its turn, neuroscience is transitioning-a movement started a couple of decades earlier-into adopting a new conceptual framework for brain architecture, in which time and thus temporal patterns plays a central role in the neuronal representation of sampled data from the world. This article discusses how neuroscience has evolved to understand the importance of brain rhythms in the overall functional architecture of the nervous system and, consequently, that neuromodulation research should embrace this new conceptual framework. Based on such support, we revisit the literature on standard (fixed-frequency pulsatile stimuli) and mostly non-standard patterns of ES to put forward our own rationale on how temporally complex stimulation schemes may impact neuromodulation strategies. We then proceed to present a low frequency, on average (thus low energy), scale-free temporally randomized ES pattern for the treatment of experimental epilepsy, devised by our group and termed NPS (Non-periodic Stimulation). The approach has been shown to have robust anticonvulsant effects in different animal models of acute and chronic seizures (displaying dysfunctional hyperexcitable tissue), while also preserving neural function. In our understanding, accumulated mechanistic evidence suggests such a beneficial mechanism of action may be due to the natural-like characteristic of a scale-free temporal pattern that may robustly compete with aberrant epileptiform activity for the recruitment of neural circuits. Delivering temporally patterned or random stimuli within specific phases of the underlying oscillations (i.e., those involved in the communication within and across brain regions) could both potentiate and disrupt the formation of neuronal assemblies with random probability. The usage of infinite improbability drive here is obviously a reference to the "The Hitchhiker's Guide to the Galaxy" comedy science fiction classic, written by Douglas Adams. The parallel is that dynamically driving brain functional connectogram, through neuromodulation, in a manner that would not favor any specific neuronal assembly and/or circuit, could re-stabilize a system that is transitioning to fall under the control of a single attractor. We conclude by discussing future avenues of investigation and their potentially disruptive impact on neurotechnology, with a particular interest in NPS implications in neural plasticity, motor rehabilitation, and its potential for clinical translation.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Rehab Technologies - INAIL Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei, Brazil
| | - Sérgio Augusto Vieira Cançado
- Núcleo Avançado de Tratamento das Epilepsias (NATE), Felício Rocho Hospital, Fundação Felice Rosso, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Núcleo de Neurociências, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|