1
|
Soleimani G, Conelea CA, Kuplicki R, Opitz A, Lim KO, Paulus MP, Ekhtiari H. Targeting VMPFC-amygdala circuit with TMS in substance use disorder: A mechanistic framework. Addict Biol 2025; 30:e70011. [PMID: 39783881 PMCID: PMC11714170 DOI: 10.1111/adb.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/04/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD). By the end of 2023, all 21 studies targeting VMPFC for SUD used anatomical landmarks (e.g., Fp1/Fp2 in the EEG system) to define coil location with a fixed orientation. Nevertheless, one-size-fits-all TMS over VMPFC has yielded variable outcomes. Here, we suggested a pipeline based on a tailored TMS targeting framework aimed at optimally modulating the VMPFC-amygdala circuit on an individual basis. We collected MRI data from 60 participants with methamphetamine use disorders (MUDs). We examined the variability in TMS target location based on task-based functional connectivity between VMPFC and amygdala using psychophysiological interaction (PPI) analysis. Electric fields (EF) were calculated for fixed vs. optimized location (Fp1/Fp2 vs. individualized maximal PPI), orientation (AF7/AF8 vs. optimized algorithm) and intensity (constant vs. adjusted) to maximize target engagement. In our pipeline, the left medial amygdala, identified as the brain region with the highest (0.31 ± 0.29) fMRI drug cue reactivity, was selected as the subcortical seed region. The voxel with the most positive amygdala-VMPFC PPI connectivity in each participant was considered the individualized TMS target (MNI-coordinates: [12.6, 64.23, -0.8] ± [13.64, 3.50, 11.01]). This individualized VMPFC-amygdala connectivity significantly correlated with VAS craving after cue exposure (R = 0.27, p = 0.03). Coil orientation was optimized to increase EF strength over the targeted circuit (0.99 ± 0.21 V/m vs. the fixed approach: Fp1: 0.56 ± 0.22 and Fp2: 0.78 ± 0.25 V/m) and TMS intensity was harmonized across the population. This study highlights the potential of an individualized VMPFC targeting framework to enhance treatment outcomes for addiction, specifically modulating the personalized VMPFC-amygdala circuit.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christine A. Conelea
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Alexander Opitz
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Laureate Institute for Brain Research (LIBR)OklahomaUSA
| |
Collapse
|
2
|
McCalley DM, Kinney KR, Kaur N, Wolf JP, Contreras IE, Smith JP, Book SW, Hanlon CA. A Randomized Controlled Trial of Medial Prefrontal Cortex Theta Burst Stimulation for Cocaine Use Disorder: A Three-Month Feasibility and Brain Target-Engagement Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00376-8. [PMID: 39667495 DOI: 10.1016/j.bpsc.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Cue-induced craving precipitates relapse in drug and alcohol use disorders. Theta burst stimulation (TBS) to the left frontal pole of the medial prefrontal cortex (MPFC) has previously been shown to reduce drinking and brain reactivity to alcohol cues. This randomized, double-blind, sham-controlled target-engagement study aimed to assess whether TBS has similar effects in individuals with cocaine use disorder (CUD). METHODS Thirty-three participants in intensive outpatient treatment received either real or sham TBS over 10 sessions across 3 weeks (36,000 pulses total; continuous TBS, 110% resting motor threshold, 3600 pulses/session). TBS was administered on days of behavioral counseling. Twenty-five individuals completed all 10 TBS sessions. Brain reactivity to cocaine cues was measured using fMRI at baseline, 1-month, 2-months, and 3-months. RESULTS Cocaine abstinence during the 3-month follow-up period was greater in the real TBS group (1-month: 92.0%, 2-month: 100.0%, 3-month: 85.0%) compared to sham (1-month: 66.6%, 2-month: 66.6%, 3-month: 66.6%), though not statistically significant [1-month: 6.00, p=0.14; 2-month OR=:14.30, p=0.09, and 3-month OR=2.75, p=0.30]. However, there was a significant effect on cocaine cue reactivity (treatment effect: F1,365= 8.92, p=0.003; time*treatment interaction: F3,365=12.88, p<0.001). Real TBS reduced cocaine cue reactivity in the MPFC (F3,72=5.46, p=0.02) overall, and in the anterior cingulate (F3,72=3.03, p=0.04), and insula (F3,72=3.60, p=0.02). CONCLUSIONS This early-stage trial demonstrates TBS to the MPFC reduces brain reactivity to cocaine cues in key nodes of the Salience Network in treatment-seeking cocaine users. Future, well-powered trials are warranted to evaluate clinical efficacy outcomes.
Collapse
Affiliation(s)
- Daniel M McCalley
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Kaitlin R Kinney
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Navneet Kaur
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Julia P Wolf
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Ingrid E Contreras
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Joshua P Smith
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Sarah W Book
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC; Department of Neurosciences, Medical University of South Carolina, Charleston, SC; Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
3
|
Tang VM, Blumberger DM. Transcranial magnetic stimulation for the rehabilitation of patients with addiction: current status and future prospects. Expert Rev Med Devices 2024; 21:943-954. [PMID: 39323104 DOI: 10.1080/17434440.2024.2404962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Substance use disorders (SUDs) are severe conditions that remain extremely challenging to treat in clinical practice. With high rates of non-response to current treatment options and several SUDs with no approved interventions, novel therapies are needed. Repetitive transcranial magnetic stimulation (rTMS) can non-invasively modulate the neurocircuitry of brain-based disorders, and investigation into its therapeutic potential for SUDs is growing rapidly. AREAS COVERED In this review, we summarize the clinical research to date evaluating its safety and efficacy for various SUDs. We highlight the investigations comparing different stimulation parameters to present our current understanding on optimal stimulation parameters. Additionally, we cover key research avenues in the use of neuroimaging to guide treatment, cue-induction paradigms, and adjunctive or combination treatments that may optimize outcomes. EXPERT OPINION Evidence of rTMS as an effective treatment for certain SUDs has emerged and is preliminary for others. There are a growing number of studies showing benefit and meta-analyses suggesting that rTMS can significantly reduce substance craving and consumption. However, the optimal approach has not been determined, and there is a great deal of heterogeneity in rTMS protocols and mixed outcomes. Further research into strategies for enhancing precision will be crucial in moving the field forward.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
4
|
Sangchooli A, Zare-Bidoky M, Fathi Jouzdani A, Schacht J, Bjork JM, Claus ED, Prisciandaro JJ, Wilson SJ, Wüstenberg T, Potvin S, Ahmadi P, Bach P, Baldacchino A, Beck A, Brady KT, Brewer JA, Childress AR, Courtney KE, Ebrahimi M, Filbey FM, Garavan H, Ghahremani DG, Goldstein RZ, Goudriaan AE, Grodin EN, Hanlon CA, Haugg A, Heilig M, Heinz A, Holczer A, Van Holst RJ, Joseph JE, Juliano AC, Kaufman MJ, Kiefer F, Khojasteh Zonoozi A, Kuplicki RT, Leyton M, London ED, Mackey S, McClernon FJ, Mellick WH, Morley K, Noori HR, Oghabian MA, Oliver JA, Owens M, Paulus MP, Perini I, Rafei P, Ray LA, Sinha R, Smolka MN, Soleimani G, Spanagel R, Steele VR, Tapert SF, Vollstädt-Klein S, Wetherill RR, Witkiewitz K, Yuan K, Zhang X, Verdejo-Garcia A, Potenza MN, Janes AC, Kober H, Zilverstand A, Ekhtiari H. Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity: A Systematic Review. JAMA Psychiatry 2024; 81:414-425. [PMID: 38324323 PMCID: PMC11304510 DOI: 10.1001/jamapsychiatry.2023.5483] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
Collapse
Affiliation(s)
- Arshiya Sangchooli
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Mehran Zare-Bidoky
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph Schacht
- Department of Psychiatry, University of Colorado School of Medicine, Aurora
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, Richmond
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park
| | - James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, State College
| | - Torsten Wüstenberg
- Field of Focus IV, Core Facility for Neuroscience of Self-Regulation (CNSR), Heidelberg University, Heidelberg, Germany
| | - Stéphane Potvin
- Department of Psychiatry and Addiction, Université de Montréal, Montréal, Quebec, Canada
| | - Pooria Ahmadi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen T Brady
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anneke E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- BrainsWay Inc, Winston-Salem, North Carolina
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Ruth J Van Holst
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | | | - Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - William H Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Kirsten Morley
- Specialty of Addiction Medicine, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hamid R Noori
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Jason A Oliver
- TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Max Owens
- Department of Psychiatry, University of Vermont, Burlington
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Parnian Rafei
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Lara A Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
| | | | - Marc N Potenza
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Amy C Janes
- Cognitive and Pharmacological Neuroimaging Unit, National Institute on Drug Abuse, Baltimore, Maryland
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
5
|
Soleimani G, Joutsa J, Moussawi K, Siddiqi SH, Kuplicki R, Bikson M, Paulus MP, Fox MD, Hanlon CA, Ekhtiari H. Converging Evidence for Frontopolar Cortex as a Target for Neuromodulation in Addiction Treatment. Am J Psychiatry 2024; 181:100-114. [PMID: 38018143 PMCID: PMC11318367 DOI: 10.1176/appi.ajp.20221022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Juho Joutsa
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Khaled Moussawi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Shan H Siddiqi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Rayus Kuplicki
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Marom Bikson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Martin P Paulus
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Michael D Fox
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| |
Collapse
|