1
|
Petersen N, Apostol MR, Jordan T, Ngo TDP, Kearley NW, London ED, Leuchter AF. Comparing neuromodulation targets to reduce cigarette craving and withdrawal: a randomized clinical trial. Neuropsychopharmacology 2025:10.1038/s41386-025-02106-2. [PMID: 40281039 DOI: 10.1038/s41386-025-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Cigarette smoking remains the leading preventable cause of death, emphasizing the need for new therapeutics, such as repetitive transcranial magnetic stimulation (TMS). We tested the hypothesis that TMS to three targets would reduce cigarette craving and withdrawal by modulating connectivity within and between three canonical networks in a randomized clinical trial (ClinicalTrials.gov: NCT03827265). Participants (N = 72; DSM-5 tobacco use disorder, ≥1 year of daily smoking) received one session of TMS to hubs of canonical resting-state networks: the dorsolateral prefrontal cortex (dlPFC), superior frontal gyrus (SFG), posterior parietal cortex (PPC), and area v5 (control). Self-reports (craving, withdrawal, and negative affect) and resting-state functional connectivity were measured before and after stimulation. SFG stimulation significantly reduced craving (95% CI, 0.0476-7.9559) and withdrawal (95% CI, 0.9225-8.1063) versus control, with larger effects in men (D = 0.59) than in women (D = 0.30). SFG stimulation did not change network connectivity, whereas dlPFC stimulation increased somatomotor, default mode, and dorsal attention network connectivity. No severe or unexpected treatment-related adverse events occurred. These findings suggest that SFG shows promise as a target for smoking-cessation treatment, especially for men. Further trials are warranted to confirm efficacy and develop imaging biomarkers for precision neuromodulation.
Collapse
Affiliation(s)
- Nicole Petersen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Michael R Apostol
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy Jordan
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Anesthesiology, Emory School of Medicine, Atlanta, GA, USA
| | - Thuc Doan P Ngo
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Nicholas W Kearley
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrew F Leuchter
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Slan AR, Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Jackson NJ, Valles TE, Wilke SA, Hoftman GD, Koek RJ, Leuchter MK, Krantz DE, Strouse TB, Tadayonnejad R, Ginder ND, Distler MG, Lee JH, Adelekun AE, Einstein EH, Oughli HA, Leuchter AF. The role of sex and age in the differential efficacy of 10 Hz and intermittent theta-burst (iTBS) repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). J Affect Disord 2024; 366:106-112. [PMID: 39187197 DOI: 10.1016/j.jad.2024.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Sex- and age-dependent outcome differences have been observed in treatment of Major Depressive Disorder (MDD), including 10 Hz repetitive Transcranial Magnetic Stimulation (rTMS). We examined whether there are sex- and age-dependent differences in outcome with intermittent Theta Burst Stimulation (iTBS), another rTMS protocol. METHODS The relationship between biological sex, age, and treatment outcome was retrospectively examined among 414 patients with MDD treated with 10 Hz or iTBS rTMS. Linear mixed-effects modeling was used to examine the association between treatment and change in the 30-item Inventory of Depressive Symptomatology Self-Report (IDS-SR30) score from baseline to treatments 10 and 30, with biological sex (M/F), protocol (iTBS/10 Hz), age (≥/<50 years old), and time (treatment 1/10/30) included as fixed effects. The three-way sex-protocol-time and age-protocol-time interactions were used to determine any differential relationships between protocol and outcome dependent on sex and age. Post-hoc t-tests were conducted to examine differences in improvement. RESULTS There was a significant three-way sex-protocol-time interaction at treatments 10 (p = 0.016) and 30 (p = 0.031). Males showed significantly greater improvement with iTBS than females at treatments 10 (p = 0.041) and 30 (p = 0.035), while females showed numerically greater improvement with 10 Hz treatment. While there was not a significant three-way age-protocol-time interaction, there was a significant interaction between age (≥50 years old) and time at treatments 10 (p = 0.007) and 30 (p = 0.042), and among age, sex, and time at treatment 30 (p = 0.028). LIMITATIONS Retrospective naturalistic treatment protocol. CONCLUSIONS iTBS appeared less efficacious in females than in males, and rTMS overall was more efficacious in patients over fifty, particularly females.
Collapse
Affiliation(s)
- Aaron R Slan
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Cole Citrenbaum
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Juliana Corlier
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Doan Ngo
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nicholas J Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thomas E Valles
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott A Wilke
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gil D Hoftman
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ralph J Koek
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael K Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David E Krantz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thomas B Strouse
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Margaret G Distler
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John H Lee
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Adesewa E Adelekun
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Evan H Einstein
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hanadi A Oughli
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Martini M, Arias N. Disentangling the effects of near-infrared light stimulation and exercise on cognitive function in fNIRS studies. Neuroimage 2024; 292:120615. [PMID: 38631617 DOI: 10.1016/j.neuroimage.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) studies often aim to measure changes in the brain's hemodynamic response in relation to a specific intervention. We recently showed how a fNIRS device could induce photobiomodulatory effects on cognition by using its near-infrared (NIR) light. However, so far, fNIRS research has overlooked the stimulatory potential intrinsic to this technique. The work by Kuwamizu et al. (2023) on pupil dynamics during exercise is no exception. Here, we suggest a fix to their experimental design, which could be taken into account in other fNIRS studies, to guarantee an adequate level of control for possible unconsidered photobiomodulatory effects.
Collapse
Affiliation(s)
- Matteo Martini
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, Foggia 71121, Italy.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Psychology and Neuroscience, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo 33005, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, Madrid 28248, Spain
| |
Collapse
|