1
|
Liu QN, Bian DD, Ge BM, Zhou CL, Tang BP. Molecular characterization of a 14-3-3 zeta gene from Plodia interpunctella: A potential marker for phylogenetic inference. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Zeng Y, Hou YL, Ding X, Hou WR, Li J. Comparative analysis and molecular characterization of a gene BANF1 encoded a DNA-binding protein during mitosis from the Giant Panda and Black Bear. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:536-51. [PMID: 25009988 DOI: 10.1080/15257770.2014.902067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.
Collapse
Affiliation(s)
- Yichun Zeng
- a Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science , China West Normal University ; 44# Yuying Road, Nanchong , China
| | | | | | | | | |
Collapse
|
3
|
Chen MM, Liu YQ, Li Y, Yao R, Chen M, Xia RX, Li Q, Qin L. Molecular characterization and phylogenetic analysis of the eukaryotic translation initiation factor 4A gene in Antheraea pernyi (Lepdoptera: Saturniidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:168. [PMID: 25480968 PMCID: PMC5633915 DOI: 10.1093/jisesa/ieu030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/09/2013] [Indexed: 05/22/2023]
Abstract
Eukaryotic initiation factor 4A (eIF-4A) is an essential component for protein translation in eukaryotes. The eIF-4A gene (ApeIF-4A) was isolated and characterized from Antheraea pernyi (Guérin-Méneville) (Lepidoptera: Saturniidae). The obtained cDNA sequence was 1,435-bp long with an open reading frame of 1,266 bp encoding 421 amino acids. The predicted amino acid sequence shared several conserved features as found in known eIF-4As and revealed 74 and 78% identities with eIF-4As of Homo sapiens L. and Drosophila melanogaster (Meigen), respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that ApeIF-4A was transcribed at four developmental stages and in all tissues tested, suggesting that it plays an important role in development of A. pernyi. Homologous alignment suggested that eIF-4As are highly conserved throughout evolution of eukaryote organisms. Phylogenetic trees based on the amino acid and nucleotide sequences of eIF-4A demonstrated a similar topology with the classical systematics, suggesting that it has the potential value in phylogenetic inference of eukaryotes.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China *These authors contributed equally to this work
| | - Yan-Qun Liu
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China Key Laboratory of Wild Silkworms of Liaoning Province, Sericultural Institute of Liaoning Province, Fengcheng 118100, China *These authors contributed equally to this work
| | - Yan Li
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Yao
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Mo Chen
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Run-Xi Xia
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Qun Li
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Qin
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Wang ZD, Jiang YR, Sun Y, Li Q, Li YP, Du ZJ, Liu YQ, Qin L. Molecular characterization of a phosphoserine aminotransferase gene in Antheraea pernyi and assessment of its value for phylogenetic inference. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Du YJ, Hou YL, Hou WR. Cloning and overexpression of an important functional gene ATP6V1F encoding a component of vacuolar ATPase from the Giant Panda (Ailuropoda melanoleuca). Mol Biol Rep 2012; 39:5761-6. [PMID: 22212708 DOI: 10.1007/s11033-011-1386-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
Abstract
ATP6V1F encodes a component of vacuolar ATPase mediating acidification. The cDNA and the genomic sequences of ATP6V1F were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription polymerase chain reaction and touchdown-polymerase chain reaction, respectively. The cDNA fragment cloned is 364 bp in size, containing an open reading frame of 360 bp encoding 119 amino acids. Alignment analysis indicated that both ORF and the deduced amino acid sequence are highly conserved. The length of the genomic sequence of the Giant Panda is 2225 bp, including two exons and one intron. Topology prediction showed that there is one protein kinase C phosphorylation site, two Casein kinase II phosphorylation sites, and one N-myristoylation site in the ATP6V1F protein. The ATP6V1F gene was overexpressed in Escherichia coli indicating that ATP6V1F fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 17 kDa polypeptide, which was according with the predicted protein and also could be used to purify the protein and study its function.
Collapse
Affiliation(s)
- Yu-Jie Du
- Biochemical Department, Basic Education College of Zhanjiang Normal University, 8# Cunjinsiheng Road, Zhanjiang, 524037, People's Republic of China.
| | | | | |
Collapse
|
6
|
Hou WR, Tang Y, Hou YL, Song Y, Zhang T, Wu GF. cDNA, genomic sequence cloning, and overexpression of EIF1 from the giant panda (Ailuropoda Melanoleuca) and the black bear (Ursus Thibetanus Mupinensis). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:547-61. [PMID: 20589574 DOI: 10.1080/15257770.2010.487506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.
Collapse
Affiliation(s)
- Wan-ru Hou
- College of Life Science, China West Normal University, Nanchong, China
| | | | | | | | | | | |
Collapse
|
7
|
Li Y, Wang H, Xia R, Wu S, Shi S, Su J, Liu Y, Qin L, Wang Z. Molecular cloning, expression pattern and phylogenetic analysis of the will die slowly gene from the Chinese oak silkworm, Antheraea pernyi. Mol Biol Rep 2010; 38:3795-803. [PMID: 21104437 DOI: 10.1007/s11033-010-0495-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
Abstract
The will die slowly (wds) gene coding for a WD-repeat protein with seven repeats has been characterized in Drosophila melanogaster. In this paper, the wds gene was isolated and characterized from the Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae). The obtained 1733 bp cDNA sequence contains an open reading frame of 1041 bp encoding a polypeptide of 346 amino acids, with 85% sequence identity to that from D. melanogaster. RT-PCR analysis showed that the wds gene was transcribed during four developmental stages and in all the tissues tested, consistent with the result observed in Bombyx mori based on EST resources and genome-wide microarray information. The mRNA expression level of the A. pernyi wds gene was not significantly down- or up- regulated under temperature stress compared to the control, indicating that it may be not involved in temperature stress tolerance. In search of database, the wds protein homologues were found in various kinds of eukaryotes, including fungi, plants, invertebrates and vertebrates, with 50-93% amino acid sequence identities between them, suggesting that they are highly conserved during the evolution of eukaryotes. Phylogenetic analysis based on the wds protein homologue sequences clearly separated the known fungi, plants, invertebrates and vertebrates, consistent with the topology tree on the classical systematics, suggesting the potential value of wds protein in eukaryotic phylogenetic inference. In vertebrates, two apparent types of the wds proteins were also defined by sequence alignment and phylogenetic analysis.
Collapse
Affiliation(s)
- Yuping Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu GF, Hou YL, Hou WR, Song Y, Zhang T. Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression. GENETICS AND MOLECULAR RESEARCH 2010; 9:2004-15. [PMID: 20957604 DOI: 10.4238/vol9-4gmr899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.
Collapse
Affiliation(s)
- G-F Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | | | | | | | | |
Collapse
|
9
|
Liu L, Wang HY, Jin HY, Wu S, Li YP, Liu YQ, Li XS, Qin L, Wang ZD. Molecular cloning, expression pattern and phylogenetic analysis of myosin light chain 2 gene from Antheraea pernyi: A potential marker for phylogenetic inference. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zhang C, Fan X, Yu HQ, Zhang HQ, Wang XL, Zhou YH. Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae: Triticeae) inferred from a gene encoding plastid acety1-CoA carboxylase. BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2009.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Hou YL, Hou WR, Ren ZL, Hao YZ, Zhang T. cDNA Cloning and Overexpression of Ribosomal Protein S19 Gene (RPS19) from the Giant Panda. DNA Cell Biol 2009; 28:41-7. [PMID: 19072723 DOI: 10.1089/dna.2008.0799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yi-Ling Hou
- College of Agriculture, Sichuan Agricultural University, Ya-an, China
- College of Life Science, China West Normal University, Nanchong, China
| | - Wan-Ru Hou
- College of Life Science, China West Normal University, Nanchong, China
| | - Zheng-Long Ren
- College of Agriculture, Sichuan Agricultural University, Ya-an, China
| | - Yan-Zhe Hao
- College of Life Science, China West Normal University, Nanchong, China
| | - Tian Zhang
- College of Life Science, China West Normal University, Nanchong, China
| |
Collapse
|