1
|
Liu S, Zheng J, Li F, Chi M, Cheng S, Jiang W, Liu Y, Gu Z, Zhao J. Chromosome-scale assembly and quantitative trait locus mapping for major economic traits of the Culter alburnus genome using Illumina and PacBio sequencing with Hi-C mapping information. Front Genet 2023; 14:1072506. [PMID: 37303957 PMCID: PMC10248148 DOI: 10.3389/fgene.2023.1072506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Topmouth culter (Culter alburnus) is an economically important freshwater fish with high nutritional value. However, its potential genetic advantages have not been fully exploited. Therefore, we aimed to determine the genome sequence of C. alburnus and examine quantitative trait loci (QTLs) related to major economic traits. The results showed that 24 pseudochromosomes were anchored by 914.74 Mb of the C. alburnus genome sequence. De novo sequencing identified 31,279 protein-coding genes with an average length of 8507 bp and average coding sequ ence of 1115 bp. In addition, a high-density genetic linkage map consisting of 24 linkage groups was constructed based on 353,532 high-quality single nucleotide polymorphisms and 4,710 bin markers. A total of 28 QTLs corresponding to 11 genes, 26 QTLs corresponding to 11 genes, and 12 QTLs corresponding to 5 genes were identified for sex, intermuscular spine number and body weight traits, respectively. In this study, we assembled an accurate and nearly complete genome of C. alburnus by combining Illumina, PacBio, and high-throughput Chromosome conformation capture (Hi-C) technologies. In addition, we identified QTLs that explained variances in intermuscular spine number, body weight, and sex differences in C. alburnus. These genetic markers or candidate genes associated with growth traits provide a basis for marker-assisted selection in C. alburnus.
Collapse
Affiliation(s)
- Shili Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianbo Zheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Fei Li
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meili Chi
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shun Cheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Wenping Jiang
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yinuo Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zhimin Gu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jinliang Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
He M, Fang DA, Chen YJ, Sun HB, Luo H, Ren YF, Li TY. Genetic Diversity Evaluation and Conservation of Topmouth Culter ( Culter alburnus) Germplasm in Five River Basins in China. BIOLOGY 2022; 12:biology12010012. [PMID: 36671705 PMCID: PMC9854899 DOI: 10.3390/biology12010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
To study the genetic diversity of Culter alburnus (C. alburnus) populations, we analyzed the genetic diversity of five C. alburnus populations from Songhua Lake (SH), Huaihe River (HH), Changjiang River (CJ), Taihu Lake (TH), and Gehu Lake (GH) based on mitochondrial COI gene sequences. The results showed that the average contents of bases T, C, A, and G in the 526 bp COI gene sequence were 25.3%, 18.1%, 28.1%, and 28.6%, respectively, which showed AT bias. A total of 115 polymorphic sites were detected in the five populations, and 11 haplotypes (Hap) were defined. The nucleotide diversity (Pi) of the five populations ranged from 0.00053 to 0.01834, and the haplotype diversity (Hd) ranged from 0.280 to 0.746, with the highest genetic diversity in the TH population, followed by the SH population, with lower genetic diversity in the HH, CJ and GH populations. The analysis of the fixation index (Fst) and the genetic distance between populations showed that there was significant genetic differentiation between the SH population and the other populations, and the genetic distances between all of them were far; the genetic diversity within populations was higher than that between populations. Neutral tests, mismatch distributions, and Bayesian skyline plot (BSP) analyses showed that the C. alburnus populations have not experienced population expansion and are relatively stable in historical dynamics.
Collapse
Affiliation(s)
- Miao He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Di-An Fang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| | - Yong-jin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hai-bo Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Luo
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-fei Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Tian-you Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Chen F, Wang Y, He J, Chen L, Xue G, Zhao Y, Peng Y, Smith C, Zhang J, Chen J, Xie P. Molecular Mechanisms of Spawning Habits for the Adaptive Radiation of Endemic East Asian Cyprinid Fishes. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9827986. [PMID: 36204246 PMCID: PMC9513835 DOI: 10.34133/2022/9827986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
Abstract
Despite the widespread recognition of adaptive radiation as a driver of speciation, the mechanisms by which natural selection generates new species are incompletely understood. The evolutionary radiation of endemic East Asian cyprinids has been proposed as evolving through a change in spawning habits, involving a transition from semibuoyant eggs to adhesive eggs in response to crosslinked river-lake system formation. Here, we investigated the molecular mechanisms that underpin this radiation, associated with egg hydration and adhesiveness. We demonstrated that semibuoyant eggs enhance hydration by increasing the degradation of yolk protein and accumulation of Ca2+ and Mg2+ ions, while adhesive eggs improve adhesiveness and hardness of the egg envelope by producing an adhesive layer and a unique 4th layer to the egg envelope. Based on multiomics analyses and verification tests, we showed that during the process of adaptive radiation, adhesive eggs downregulated the "vitellogenin degradation pathway," "zinc metalloprotease pathway," and "ubiquitin-proteasome pathway" and the pathways of Ca2+ and Mg2+ active transport to reduce their hydration. At the same time, adhesive eggs upregulated the crosslinks of microfilament-associated proteins and adhesive-related proteins, the hardening-related proteins of the egg envelope, and the biosynthesis of glycosaminoglycan in the ovary to generate adhesiveness. These findings illustrate the novel molecular mechanisms associated with hydration and adhesiveness of freshwater fish eggs and identify critical molecular mechanisms involved in the adaptive radiation of endemic East Asian cyprinids. We propose that these key egg attributes may function as "magic traits" in this adaptive radiation.
Collapse
Affiliation(s)
- Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ge Xue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanghui Peng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carl Smith
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jia Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, Kunming 650500, China
| |
Collapse
|
4
|
Assessment of Genetic Diversity of the Salangid, Neosalanx taihuensis, Based on the Mitochondrial COI Gene in Different Chinese River Basins. BIOLOGY 2022; 11:biology11070968. [PMID: 36101349 PMCID: PMC9311889 DOI: 10.3390/biology11070968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/08/2022]
Abstract
Simple Summary In the current study, we estimate the genetic diversity of the salangid Neosalanxtaihuensis sampled from 11 populations in the six typical river basins of China. Using the COI gene sequencing technology, the N. taihuensis population’s genetic difference within and between river basins was investigated. Significant levels of genetic subdivision were detected among populations within basins rather than between basins. Population history dynamics showed that N. taihuensis populations experienced a population expansion during the glacial period in the late Pleistocene. These results suggest that different populations should be considered as different management units to achieve effective conservation and management purposes. Abstract The salangid Neosalanx taihuensis (Salangidae) is a commercially important economical fish endemic to China and restricted to large freshwater systems with a wide-ranging distribution. This fish species has continuous distribution ranges and a long-introduced aquaculture history in Chinese basins. However, the research on its population genetic differentiation within and between basins is very limited. In this regard, 197 individuals were sampled from 11 populations in the Nenjiang River Basin (A1–A4), Songhua River Basin (B1), Yellow River Basin (C1–C2), Yangtze River Basin (D1), Lanchang River Basin (E1–E2) and Huaihe River Basin (F1). Based on the COI sequence, the N.taihuensis population’s genetic difference within and between river basins was investigated. The haplotypes and their frequency distributions were strongly skewed, with most haplotypes (n = 13) represented only in single samples each and thus restricted to a single population. The most common haplotype (H4, 67/197) was found in all individuals. The analysis of molecular variance (AMOVA) revealed a random pattern in the distribution of genetic diversity, which is inconsistent with contemporary hydrological structure. The mismatch between the distribution and neutrality tests supported the evidence of a population expansion, which occurred during the late Pleistocene (0.041–0.051 million years ago). Significant levels of genetic subdivision were detected among populations within basins rather than between the six basins. Population history dynamics showed that N. taihuensis experienced an expansion during the glacial period in the late Pleistocene. Therefore, different populations should be considered as different management units to achieve effective conservation and management purposes. These results have great significance for the evaluation and exploitation of the germplasm resources of N. taihuensis.
Collapse
|
5
|
Kim NYS, Park EJ, Lee SH, Mun KH, Yang JY, Kim JB. Development and validation of multiplex PCR assay for differentiating tunas and billfishes. Food Sci Biotechnol 2021; 30:497-503. [PMID: 33936840 DOI: 10.1007/s10068-021-00893-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
Commercially available tunas and billfishes are generally processed as steaks, making it difficult to visually distinguish between the two. We developed and validated species-specific primers to prevent the adulteration of tunas by billfishes. Tunas and billfishes primers were designed on the cytochrome oxidase subunit I. Multiplex PCR bands obtained were 579 bp, 291 bp and 114 bp for tunas, billfishes and internal control. Sensitivity was determined to be 5 ng for tunas and billfishes. A total of 50 samples were monitored: 49 for tunas and 1 for billfish. As a result of the monitoring, the fake tunas did not show due to the agreement between product name and the raw material of the wrapping paper. Our results indicate that the species-specific primers developed in this study are suitable for differentiating tunas and billfishes. The newly developed multiplex PCR assay is a time and cost effective technique for determining the authenticity of tunas and billfishes.
Collapse
Affiliation(s)
- Na-Ye-Seul Kim
- Department of Food Science and Technology, Suncheon National University, Suncheon, Jeonnam 57922 Korea
| | - Eun-Ji Park
- Department of Food Science and Technology, Suncheon National University, Suncheon, Jeonnam 57922 Korea
| | - Seo-Hyun Lee
- Department of Food Science and Technology, Suncheon National University, Suncheon, Jeonnam 57922 Korea
| | - Kwang-Ho Mun
- Department of Food Science and Technology, Suncheon National University, Suncheon, Jeonnam 57922 Korea
| | - Ji-Young Yang
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Suncheon National University, Suncheon, Jeonnam 57922 Korea
| |
Collapse
|
6
|
Jia YY, Chi ML, Jiang WP, Liu SL, Cheng S, Zheng JB, Gu ZM. Identification of reproduction-related genes and pathways in the Culter alburnus H-P-G axis and characterization of their expression differences in malformed and normal gynogenetic ovaries. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1-20. [PMID: 33156507 DOI: 10.1007/s10695-020-00859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
This study applied RNA-seq technology to discover reproduction-related genes and pathways in female topmouth culter brain (including pituitary) and ovarian tissues. In functional analysis, 2479 and 2605 unigenes in the brain and ovary tissue were assigned to the "reproductive process" subcategory in addition to the 2660 and 2845 unigenes assigned to the "reproduction" subcategory. Twenty-three complete cDNA sequences were identified through the different gene expression (DGE) approach from five reproduction-related pathways (MAPK signaling pathway, neuroactive ligand-receptor interaction pathway, gonadotropin-releasing hormone signaling pathway, oocyte meiosis pathway, and steroid biosynthesis pathway). The expression levels of 16 candidate genes using qPCR in this study were in accordance with the results of transcriptome analysis. In addition, the expression levels of the FSH, 3β-HSD, PGR, and NPYR genes in malformed gynogenetic ovaries were considerably low, which was consistent with the progress of oocytogenesis in the ovaries of topmouth culter. The high expression of these four genes in the ovaries of normal topmouth culter suggested they might involve in the preparation for the shift of oogenesis to ovulation. Hence, our work identified a set of annotated gene products that are candidate factors affecting reproduction in the topmouth culter H-P-G axis. These results could be essential for further research in functional genomics and genetic editing for topmouth culter reproduction.
Collapse
Affiliation(s)
- Yong Y Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei L Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Wen P Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shi L Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shun Cheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jian B Zheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Zhi M Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China.
| |
Collapse
|
7
|
Li B, Chen SN, Ren L, Wang S, Liu L, Liu Y, Liu S, Nie P. Identification of type I IFNs and their receptors in a cyprinid fish, the topmouth culter Culter alburnus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:326-335. [PMID: 32387477 DOI: 10.1016/j.fsi.2020.04.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In fish, type I IFNs are classified into three groups, i.e. group one, group two and group three, and further separated into seven subgroups based on the number of conserved cysteines and phylogenetic relationships. In the present study, four type I IFNs, named as IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, as reported in zebrafish, were identified in a cyprinid, the topmouth culter, Culter alburnus, a species introduced recently into China's aquaculture. These IFNs may be classified as IFNa, IFNc, IFNc and IFNd in a recent nomenclature, with IFNa and IFNd having two cysteines in group one, and IFNc four cysteines in group two. These IFNs, together with their possible receptors, IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, and CRFB1, CRFB2 and CRFB5 have an open reading frame (ORF) of 540, 552, 567, 516 bp, and 1572, 1392, 1125 bp, respectively. These IFNs have high amino acid sequence identities, being 91.1-93.6% and 66.9-77.3%, with those in grass carp and zebrafish, respectively, and are expressed constitutively in organs/tissues examined in the fish. The expression of these IFNs can be further induced following poly (I:C) stimulation. However, the possible function of these IFNs and their signalling pathway are of interest for further research.
Collapse
Affiliation(s)
- Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lanhao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
8
|
Zhang Z, Chang Y, Li M. Genetic Population Structure of Dastarcus helophoroides (Coleoptera: Bothrideridae) From Different Long-Horned Beetle Hosts Based on Complete Sequences of Mitochondrial COI. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1275-1283. [PMID: 28334247 DOI: 10.1093/jee/tox059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is an important natural enemy of long-horned beetles in China, Japan, and Korea. In this study, the genetic sequence of cytochrome oxidase subunit Ι was used to investigate the genetics and relationships within and among D. helophoroides populations collected from five different geographic locations. We used principal component analysis, heatmap, and Venn diagram results to determine the relationship between haplotypes and populations. In total, 26 haplotypes with 51 nucleotide polymorphic sites were defined, and low genetic diversity was found among the different populations. Significant genetic variations were observed mainly within populations, and no correlation was found between genetic distribution and geographical distance. Low pairwise fixation index values (-0.01424 to 0.04896) and high gene flows show that there was high gene exchange between populations. The codistributed haplotype DH01 was suggested to be the most ancestral haplotype, and other haplotypes were thought to have evolved from it through several mutations. In four of the populations, both common haplotypes (DH01, DH03, and DH22) and unique haplotypes were found. Low genetic diversity among different populations is related to a relatively high flight capacity, host movement, and human-aided dispersal of D. helophoroides. The high gene exchange and typically weak population genetic structure among five populations, especially among populations of Anoplophora glabripennis (Motschulsky), Monochamus alternatus (Hope), and Massicus raddei (Blessig), may suggest that these populations cross naturally in the field.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, Republic of China (; ; )
| | - Yong Chang
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, Republic of China (; ; )
| | - Menglou Li
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, Republic of China ( ; ; )
- Corresponding author, e-mail:
| |
Collapse
|
9
|
Shi J, Wang D, Wang J, sheng J, Peng K, Hu B, Zeng L, Xiao M, Hong Y. Comparative analysis of the complete mitochondrial genomes of three geographical topmouth culter (Culter alburnus) groups and implications for their phylogenetics. Biosci Biotechnol Biochem 2017; 81:482-490. [DOI: 10.1080/09168451.2016.1270739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Topmouth culter (C. alburnus) is an important commercial fish in China. We compared the nucleotide variations in the mtDNA genomes among three geographical groups of Culter alburnus: Liangzi Lake, Hubei Province (referred to as LZH); Taihu Lake, Jiangsu Province (TH); and Poyang Lake, Jiangxi Province (PYH). The similarity of whole mtDNA genomes ranged from 0.992 to 0.999. The similarity among 13 protein-coding genes, 2 rRNA genes, and the D-loop sequences was found to range from 0.982 to 0.996. This is useful data for future designing work for making specific molecular marker for distinguishing individuals of C. alburnus from the three geographical groups. An extended termination-associated sequence (ETAS) and several conserved blocks (CSB-F, CSB-E, CSB-D, CSB1, CSB2, and CSB3) were identified in the mtDNA control regions. A phylogenetic analysis shows a monophyletic relationship of the LZF-female and the LZF-male. However, the analysis also showed paraphyletic relationships for the other two geological groups. This result will be useful for the future breeding work of C. alburnus.
Collapse
Affiliation(s)
- Jianwu Shi
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Dexia Wang
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Junhua Wang
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Junqing sheng
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Kou Peng
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Beijuan Hu
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Nanchang, China
| | - Minghe Xiao
- Nanchang Academy of Agricultural Sciences, Nanchang, China
| | - Yijiang Hong
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Qi P, Qin J, Xie C. Determination of genetic diversity of wild and cultured topmouth culter (Culter alburnus) inhabiting China using mitochondrial DNA and microsatellites. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Xu M, Tong GX, Geng LW, Jiang HF, Xu W. Mitochondrial DNA sequence of Culter compressocorpus. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:643-4. [PMID: 24739004 DOI: 10.3109/19401736.2014.908470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the complete mitochondrial genome of Culter compressocorpus was detected and annotated. The circular mtDNA molecule was 16,623 bp in length which contains 22 transfer RNA genes, 13 protein-coding genes, 2 ribosomal RNA genes, and the non-coding control region (D-loop). Its total protein-coding genes content is 68.67% in whole mitochondrial genome. The mitochondrial genome can contribute to the studies on geographical distribution and genetic diversity of C. compressocorpus resources, as well as molecular phylogeny and species identification in Cyprinidae.
Collapse
Affiliation(s)
- Min Xu
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences , Harbin , People's Republic of China and.,b College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , People's Republic of China
| | - Guang-Xiang Tong
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences , Harbin , People's Republic of China and
| | - Long-Wu Geng
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences , Harbin , People's Republic of China and
| | - Hai-Feng Jiang
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences , Harbin , People's Republic of China and
| | - Wei Xu
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences , Harbin , People's Republic of China and
| |
Collapse
|