1
|
Huang J, Jin Y, Wu R, Xie H, Yang M, Jia J, Wang G. Identification of apigenin as a multi-target inhibitor against SARS-CoV-2 by computational exploration. FASEB J 2024; 38:e70276. [PMID: 39718442 DOI: 10.1096/fj.202401972rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Multi-target strategy can serve as a valid treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but existing drugs most focus on a single target. Thus, multi-target drugs that bind multiple sites simultaneously need to be urgently studied. Apigenin has antiviral and anti-inflammatory properties. Here, we comprehensively explored the potential effect and mechanism of apigenin in SARS-CoV-2 treatment by a network algorithm, deep learning, molecular docking, molecular dynamics (MD) simulation, and normal mode analysis (NMA). KATZ-based VDA prediction method (VDA-KATZ) indicated that apigenin may provide a latent drug therapy for SARS-CoV-2. Prediction of DTA using convolution model with self-attention (CSatDTA) showed potential binding affinity of apigenin with multiple targets of virus entry, assembly, and cytokine storms including cathepsin L (CTSL), membrane (M), envelope (E), Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), NOD-like receptor pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cysteinyl aspartate-specific proteinase-1 (Caspase-1). Molecular docking indicated that apigenin could effectively bind these targets, and its stability was confirmed using MD simulation and NMA. Overall, apigenin is a multi-target inhibitor for the entry, assembly, and cytokine storms of SARS-CoV-2.
Collapse
Affiliation(s)
- Juanjuan Huang
- Key Laboratory of Pathobiology, Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yixuan Jin
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
| | - Runze Wu
- Department of Probability Statistics and Data Science, School of Mathematics, Jilin University, Changchun, China
| | - Hanxi Xie
- Key Laboratory of Pathobiology, Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiwei Jia
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
- Jilin National Applied Mathematical Center, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology, Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Erkihun M, Ayele B, Asmare Z, Endalamaw K. Current Updates on Variants of SARS-CoV- 2: Systematic Review. Health Sci Rep 2024; 7:e70166. [PMID: 39502131 PMCID: PMC11534727 DOI: 10.1002/hsr2.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background Coronavirus disease 2019 is caused by the severe acute respiratory syndrome coronavirus 2, which has become a pandemic. Severe acute respiratory syndrome coronavirus 2 is an enveloped, unsegmented, positive-sense, single-stranded RNA virus that belongs to the family Coronaviridae. Aim The objective of this review is to conduct a qualitative analysis of the current updates on epidemiology, evolution, and vaccine variants for SARS-CoV-2. Method The search strategy was done from the database based on the PRISMA criteria for qualitative analysis of this review. Literature on variants of severe acute respiratory syndrome coronavirus 2, published in English in the last 5 years (2019-2023), were included. From 179 a total of 105 articles were reviewed, searched, and retrieved from the electronic databases PubMed. The search was done using keywords like COVID-19, SARS-CoV-2, variants, mutations, and vaccines, and articles were managed using EndNote X8 software. The scope of view for this review was the course of the pandemic by emerging variants and how man is struggling to overcome this sudden pandemic through vaccines. The narrative skeleton was constructed based on the article's scope of view. Result From the parent severe acute respiratory syndrome coronavirus 2, many variants emerged during the course of this pandemic. They are mainly categorized into two variants: variants of interest and variants of concern based on the impact on public health. The World Health Organization leveled five variants: Alpha (strain B.1.1.7), Beta (strain B.1.351), Gamma (strain P.1), Delta (strain B.1.617.2), and Omicron (B.1.1.529). Conclusions It is crucial to stay informed about the latest developments in the understanding of SARS-CoV-2 variants, as new variants can emerge and impact the course of the pandemic. Health authorities and researchers continuously have to monitor and study these variants to assess their characteristics, transmissibility, severity, and the effectiveness of vaccines against them. One has to always refer to the latest information from reputable health journals or organizations for the most up-to-date and accurate details on COVID-19 variants.
Collapse
Affiliation(s)
- Mulat Erkihun
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health SciencesDebre Tabor UniversityDebre TaborEthiopia
| | - Bayu Ayele
- Laboratory Service UnitFelege Hiwot Comprehensive Specialized HospitalBahir DarEthiopia
| | - Zelalem Asmare
- Department of Medical Laboratory Sciences, College of Health SciencesWoldia UniversityWoldiaEthiopia
| | - Kirubel Endalamaw
- Department of Diagnostic Laboratory at Shegaw Motta General HospitalMotta TownEthiopia
| |
Collapse
|
3
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
4
|
Peng W, Wu J, Zhao B, Zhang L, Chen X, Wei X, Rong N, Han Y, Liu J. Pathogenicity and transcriptomic profiling reveals immunology molecular hallmarks after CA10 virus infection. Animal Model Exp Med 2024; 7:717-731. [PMID: 38747004 PMCID: PMC11528388 DOI: 10.1002/ame2.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) is a common infectious disease caused by viral infection by a variety of enteroviruses, with coxsackievirus A 10 (CA10) having become more prevalent in recent years. METHODS In this study, models of CA10 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of the virus. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection. Coxsackievirus A 16 (CA16) and enterovirus 71 (EV71) infections were also compared with CA10. RESULTS After CA10 virus infection, the mice showed paralysis of the hind limbs at 3 days post infection and weight loss at 5 days post infection. We observed viral replication in various tissues and severe inflammatory cell infiltration in skeletal muscle. The RNA-sequencing analysis showed that the DEGs in blood, muscle, thymus and spleen showed heterogeneity after CA10 infection and the most up-regulated DEGs in muscle were enriched in immune-related pathways. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on T helper (Th) cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. CONCLUSIONS Our findings revealed a group of genes that coordinate in response to CA10 infection, which increases our understanding of the pathological mechanism of HFMD.
Collapse
Affiliation(s)
- Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Lihong Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Xin Chen
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Opriessnig T, Huang YW. SARS-CoV-2 does not infect pigs, but this has to be verified regularly. Xenotransplantation 2022; 29:e12772. [PMID: 36039616 PMCID: PMC9538518 DOI: 10.1111/xen.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
For successful xenotransplantation, freedom of the xenocraft donor from certain viral infections that may harm the organ recipient is important. A novel human coronavirus (CoV) with a respiratory tropism, designated as SARS-CoV-2, was first identified in January 2020 in China, but likely has been circulating unnoticed for some time before. Since then, this virus has reached most inhabited areas, resulting in a major global pandemic which is still ongoing. Due to a high number of subclinical infections, re-infections, geographic differences in diagnostic tests used, and differences in result reporting programs, the percentage of the population infected with SARS-CoV-2 at least once has been challenging to estimate. With continuous ongoing infections in people and an overall high viral load, it makes sense to look into possible viral spillover events in pets and farm animals, who are often in close contact with humans. The pig is currently the main species considered for xenotransplantation and hence there is interest to know if pigs can become infected with SARS-CoV-2 and if so what the infection dynamics may look like. This review article summarizes the latest research findings on this topic. It would appear that pigs can currently be considered a low risk species, and hence do not pose an immediate risk to the human population or xenotransplantation recipients per se. Monitoring the ever-changing SARS-CoV-2 variants appears important to recognize immediately should this change in the future.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|