1
|
Futatsusako H, Hashimoto R, Yamamoto M, Ito J, Matsumura Y, Yoshifuji H, Shirakawa K, Takaori-Kondo A, The Genotype to Phenotype Japan (G2P-Japan) Consortium, Sato K, Nagao M, Takayama K. Longitudinal analysis of genomic mutations in SARS-CoV-2 isolates from persistent COVID-19 patient. iScience 2024; 27:109597. [PMID: 38638575 PMCID: PMC11024907 DOI: 10.1016/j.isci.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
A primary reason for the ongoing spread of coronavirus disease 2019 (COVID-19) is the continuous acquisition of mutations by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism of acquiring mutations is not fully understood. In this study, we isolated SARS-CoV-2 from an immunocompromized patient persistently infected with Omicron strain BF.5 for approximately 4 months to analyze its genome and evaluate drug resistance. Although the patient was administered the antiviral drug remdesivir (RDV), there were no acquired mutations in RDV binding site, and all isolates exhibited susceptibility to RDV. Notably, upon analyzing the S protein sequence of the day 119 isolate, we identified mutations acquired by mutant strains emerging from the BF.5 variant, suggesting that viral genome analysis in persistent COVID-19 patients may be useful in predicting viral evolution. These results suggest mutations in SARS-CoV-2 are acquired during long-term viral replication rather than in response to antiviral drugs.
Collapse
Affiliation(s)
- Hiroki Futatsusako
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Kotaro Shirakawa
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2770882, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 8600811, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 1000004, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2770882, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 8600811, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 1000004, Japan
| |
Collapse
|
2
|
Li Y, Guo Y, Huang T. Forecast the potential SARS-CoV-2 variants in the future and predict their biological properties and social impacts from bioinformatics and public health perspectives. BIOSAFETY AND HEALTH 2023; 5:191-192. [PMID: 40078224 PMCID: PMC11894992 DOI: 10.1016/j.bsheal.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 03/14/2025] Open
Abstract
•We provided a comprehensive view on the effects of new SARS-CoV-2 variants on transmission, pathogenicity, and fatality.•A wide range of multimodal data have been analyzed, including SARS-CoV-2 variants, multi-omics, and public health data.•Our objective is to support epidemic prevention and control efforts.
Collapse
Affiliation(s)
- Yixue Li
- Guangzhou Laboratory, Guangzhou 510005, China
| | | | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|