1
|
Rahmatallah Y, Kemp AS, Iyer A, Pillai L, Larson-Prior LJ, Virmani T, Prior F. Pre-trained convolutional neural networks identify Parkinson's disease from spectrogram images of voice samples. Sci Rep 2025; 15:7337. [PMID: 40025201 PMCID: PMC11873116 DOI: 10.1038/s41598-025-92105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease. We tested this approach by collecting a dataset of voice recordings via analog telephone lines, which support limited bandwidth. The convolutional neural network with transfer learning approach showed superior performance against conventional machine learning methods that collapse measurements across time to generate feature vectors. This study builds upon our prior results and presents two novel contributions: First, we tested the performance of our approach on a larger voice dataset recorded using smartphones with wide bandwidth. Our results show comparable performance between two datasets generated using different recording platforms despite the differences in most important features resulting from the limited bandwidth of analog telephonic lines. Second, we compared the classification performance achieved using linear-scale and mel-scale spectrogram images and showed a small but statistically significant gain using mel-scale spectrograms.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | - Aaron S Kemp
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Anu Iyer
- Georgia Institute of Technology, Atlanta, 30332, USA
| | - Lakshmi Pillai
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Linda J Larson-Prior
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neuroscience, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Tuhin Virmani
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Fred Prior
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| |
Collapse
|
2
|
Rahmatallah Y, Kemp A, Iyer A, Pillai L, Larson-Prior L, Virmani T, Prior F. Pre-trained Convolutional Neural Networks Identify Parkinson's Disease from Spectrogram Images of Voice Samples. RESEARCH SQUARE 2024:rs.3.rs-5348708. [PMID: 39764112 PMCID: PMC11702857 DOI: 10.21203/rs.3.rs-5348708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease. We tested this approach by collecting a dataset of voice recordings via telephone lines, which have limited bandwidth. This study builds upon our prior results in two major ways: First, we tested the performance of our approach on a larger voice dataset recorded using smartphones with wide bandwidth. Our results show comparable performance between two datasets generated using different recording platforms where we report differences in most important features resulting from the limited bandwidth of telephonic lines. Second, we compared the classification performance achieved using linear-scale and mel-scale spectrogram images and showed a small but statistically significant gain using mel-scale spectrograms. The convolutional neural network with transfer learning approach showed superior performance against conventional machine learning methods that collapse measurements across time to generate feature vectors.
Collapse
Affiliation(s)
| | - Aaron Kemp
- University of Arkansas for Medical Sciences
| | | | | | | | | | - Fred Prior
- University of Arkansas for Medical Sciences
| |
Collapse
|
3
|
Zhu M, Lin J, Cao G, Zhang J, Zhang X, Zhou J, Gao Y. Prediction of constitutive model for basalt fiber reinforced concrete based on PSO-KNN. Heliyon 2024; 10:e32240. [PMID: 39668966 PMCID: PMC11637177 DOI: 10.1016/j.heliyon.2024.e32240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 12/14/2024] Open
Abstract
In order to find a simple method to study the effect of basalt fibers on the mechanical properties of concrete when incorporated into concrete, machine learning is introduced in this work on an experimental basis. The basalt fiber-reinforced concrete (BFRC) specimens were fabricated through independent processing, and the compression tests under different stress states were conducted on the BFRC specimens with different fiber compositions using the MTS816 rock testing system. After obtaining the experimental dataset with the four influencing factors of fiber volume fraction, fiber length, circumferential pressure and strain as input variables and stress as output variable, the BFRC prediction model was established based on extreme gradient boosting, support vector machine, K-nearest neighbor, and Particle Swarm Optimization K-Nearest Neighbor (PSO-KNN) algorithms; Then the predicted fitting results of the training set and test set are analyzed according to the relevant evaluation indexes, and the data indexes indicate that the PSO-KNN model has the best prediction performance, and the PSO-KNN model is used to predict the stress-strain fitting curves of BFRC, and finally the parameter contribution is analyzed based on the information of the curves. This is the first time that PSO-KNN is used in the study of BFRC eigenmodel, and the prediction effect is good, which not only overcomes the drawbacks of time-consuming and expensive experimental research, but also provides a basis and reference for engineering applications and later scholars' research on BFRC eigenmodel.
Collapse
Affiliation(s)
- Meng Zhu
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| | - Jiajian Lin
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| | - Guangyong Cao
- School of Civil Engineering, Anhui Jianzhu University, HeFei 230601, PR China
- Anhui Provincial Key Laboratory of Building Structure and Underground Engineering, Hefei 230601, PR China
| | - Junliang Zhang
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| | - Xin Zhang
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| | - Jiaxing Zhou
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| | - Yang Gao
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, PR China
| |
Collapse
|
4
|
Ali L, Javeed A, Noor A, Rauf HT, Kadry S, Gandomi AH. Parkinson's disease detection based on features refinement through L1 regularized SVM and deep neural network. Sci Rep 2024; 14:1333. [PMID: 38228772 PMCID: PMC10791701 DOI: 10.1038/s41598-024-51600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
In previous studies, replicated and multiple types of speech data have been used for Parkinson's disease (PD) detection. However, two main problems in these studies are lower PD detection accuracy and inappropriate validation methodologies leading to unreliable results. This study discusses the effects of inappropriate validation methodologies used in previous studies and highlights the use of appropriate alternative validation methods that would ensure generalization. To enhance PD detection accuracy, we propose a two-stage diagnostic system that refines the extracted set of features through [Formula: see text] regularized linear support vector machine and classifies the refined subset of features through a deep neural network. To rigorously evaluate the effectiveness of the proposed diagnostic system, experiments are performed on two different voice recording-based benchmark datasets. For both datasets, the proposed diagnostic system achieves 100% accuracy under leave-one-subject-out (LOSO) cross-validation (CV) and 97.5% accuracy under k-fold CV. The results show that the proposed system outperforms the existing methods regarding PD detection accuracy. The results suggest that the proposed diagnostic system is essential to improving non-invasive diagnostic decision support in PD.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Electrical Engineering, University of Science and Technology Bannu, Bannu, Pakistan
| | - Ashir Javeed
- Aging Research Center, Karolinska Institutet, Solna, Sweden
| | - Adeeb Noor
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, 80221, Jeddah, Saudi Arabia
| | | | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary.
| |
Collapse
|
5
|
Sheng J, Lam S, Zhang J, Zhang Y, Cai J. Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy. Comput Biol Med 2024; 168:107684. [PMID: 38039891 DOI: 10.1016/j.compbiomed.2023.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Omics fusion has emerged as a crucial preprocessing approach in medical image processing, significantly assisting several studies. One of the challenges encountered in integrating omics data is the unpredictability arising from disparities in data sources and medical imaging equipment. Due to these differences, the distribution of omics futures exhibits spatial heterogeneity, diminishing their capacity to enhance subsequent tasks. To overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology for nasopharyngeal carcinoma (NPC) distant metastasis prediction to mitigate the disparities inherent in omics data. The multi-kernel late-fusion method can reduce the impact of these differences by mapping the features using the most suiTable single-kernel function and then combining them in a high-dimensional space that can effectively represent the data. The proposed approach in this study employs a distinctive framework incorporating a label-softening technique alongside a multi-kernel-based Radial basis function (RBF) neural network to address these limitations. An efficient representation of the data may be achieved by utilizing the multi-kernel to map the inherent features and then merging them in a space with many dimensions. However, the inflexibility of label fitting poses a constraint on using multi-kernel late-fusion methods in complex NPC datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. The label softening increases the disparity between the two cohorts, providing a more flexible structure for allocating labels. The proposed model is evaluated on multi-omics datasets, and the results demonstrate its strength and effectiveness in predicting distant metastasis of NPC patients.
Collapse
Affiliation(s)
- Jiabao Sheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - SaiKit Lam
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Iyer A, Kemp A, Rahmatallah Y, Pillai L, Glover A, Prior F, Larson-Prior L, Virmani T. A machine learning method to process voice samples for identification of Parkinson's disease. Sci Rep 2023; 13:20615. [PMID: 37996478 PMCID: PMC10667335 DOI: 10.1038/s41598-023-47568-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Machine learning approaches have been used for the automatic detection of Parkinson's disease with voice recordings being the most used data type due to the simple and non-invasive nature of acquiring such data. Although voice recordings captured via telephone or mobile devices allow much easier and wider access for data collection, current conflicting performance results limit their clinical applicability. This study has two novel contributions. First, we show the reliability of personal telephone-collected voice recordings of the sustained vowel /a/ in natural settings by collecting samples from 50 people with specialist-diagnosed Parkinson's disease and 50 healthy controls and applying machine learning classification with voice features related to phonation. Second, we utilize a novel application of a pre-trained convolutional neural network (Inception V3) with transfer learning to analyze the spectrograms of the sustained vowel from these samples. This approach considers speech intensity estimates across time and frequency scales rather than collapsing measurements across time. We show the superiority of our deep learning model for the task of classifying people with Parkinson's disease as distinct from healthy controls.
Collapse
Affiliation(s)
- Anu Iyer
- Georgia Institute of Technology, Atlanta, 30332, USA
| | - Aaron Kemp
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | - Yasir Rahmatallah
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Lakshmi Pillai
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Aliyah Glover
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Fred Prior
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Linda Larson-Prior
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Tuhin Virmani
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
- Neurology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| |
Collapse
|
7
|
Biswas SK, Nath Boruah A, Saha R, Raj RS, Chakraborty M, Bordoloi M. Early detection of Parkinson disease using stacking ensemble method. Comput Methods Biomech Biomed Engin 2023; 26:527-539. [PMID: 35587795 DOI: 10.1080/10255842.2022.2072683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that occurs due to corrosion of the substantianigra, located in the thalamic region of the human brain, and is responsible for the transmission of neural signals throughout the human body using brain chemical, termed as "dopamine." Diagnosis of PD is difficult, as it is often affected by the characteristics of the medical data of the patients, which include the presence of various indicators, imbalance cases of patients' data records, similar cases of healthy/affected persons, etc. Hence, sometimes the process of diagnosis may also be affected by human error. To overcome this problem some intelligent models have been proposed; however, most of them are single classifier-based models and due to this these models cannot handle noisy and imbalanced data properly and thus sometimes overfit the model. To reduce bias and variance, and to avoid overfitting of a single classifier-based model, this paper proposes an ensemble-based PD diagnosis model, named Ensembled Expert System for Diagnosis of Parkinson's Disease (EESDPD) with relevant features and a simple stacking ensemble technique. The proposed EESDPD aggregates diverse assumptions for making the prediction. The performance of the proposed EESDPD is compared with the performances of logistic regression, SVM, Naïve Bayes, Random Forest, XGBoost, simple Decision Tree, B-TDS-PD and B-TESM-PD in terms of classification accuracy, precision, recall and F1-score measures.
Collapse
Affiliation(s)
- Saroj Kumar Biswas
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Arpita Nath Boruah
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Rajib Saha
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Ravi Shankar Raj
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Manomita Chakraborty
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
| | - Monali Bordoloi
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
| |
Collapse
|
8
|
Ge W, Lueck C, Suominen H, Apthorp D. Has machine learning over-promised in healthcare? A critical analysis and a proposal for improved evaluation, with evidence from Parkinson’s disease. Artif Intell Med 2023; 139:102524. [PMID: 37100503 DOI: 10.1016/j.artmed.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Adoption of artificial intelligence (AI) by the medical community has long been anticipated, endorsed by a stream of machine learning literature showcasing AI systems that yield extraordinary performance. However, many of these systems are likely over-promising and will under-deliver in practice. One key reason is the community's failure to acknowledge and address the presence of inflationary effects in the data. These simultaneously inflate evaluation performance and prevent a model from learning the underlying task, thus severely misrepresenting how that model would perform in the real world. This paper investigated the impact of these inflationary effects on healthcare tasks, as well as how these effects can be addressed. Specifically, we defined three inflationary effects that occur in medical data sets and allow models to easily reach small training losses and prevent skillful learning. We investigated two data sets of sustained vowel phonation from participants with and without Parkinson's disease, and revealed that published models which have achieved high classification performances on these were artificially enhanced due to the inflationary effects. Our experiments showed that removing each inflationary effect corresponded with a decrease in classification accuracy, and that removing all inflationary effects reduced the evaluated performance by up to 30%. Additionally, the performance on a more realistic test set increased, suggesting that the removal of these inflationary effects enabled the model to better learn the underlying task and generalize. Source code is available at https://github.com/Wenbo-G/pd-phonation-analysis under the MIT license.
Collapse
|
9
|
Li Y, Zhao D, Xu Z, Heidari AA, Chen H, Jiang X, Liu Z, Wang M, Zhou Q, Xu S. bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease. Front Neuroinform 2023; 16:1063048. [PMID: 36726405 PMCID: PMC9884708 DOI: 10.3389/fninf.2022.1063048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic disease with extreme itching that bothers patients. However, diagnosing AD depends on clinicians' subjective judgment, which may be missed or misdiagnosed sometimes. Methods This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. In SRWPSO, the Sobol sequence is introduced into particle swarm optimization (PSO) to make the particle distribution of the initial population more uniform, thus improving the population's diversity and traversal. At the same time, this study also adds a random replacement strategy and adaptive weight strategy to the population updating process of PSO to overcome the shortcomings of poor convergence accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO. Results To prove that the study has scientific significance, this paper first successfully demonstrates the core advantages of SRWPSO in well-known algorithms through benchmark function validation experiments. Secondly, this article demonstrates that the bSRWPSO-FKNN has practical medical significance and effectiveness through nine public and medical datasets. Discussion The 10 times 10-fold cross-validation experiments demonstrate that bSRWPSO-FKNN can pick up the key features of AD, including the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the established bSRWPSO-FKNN method practically aids in the diagnosis of AD.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China,*Correspondence: Dong Zhao,
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China,Huiling Chen,
| | - Xinyu Jiang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhifang Liu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Wang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiongyan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Suling Xu,
| |
Collapse
|
10
|
Use of common spatial patterns for early detection of Parkinson's disease. Sci Rep 2022; 12:18793. [PMID: 36335198 PMCID: PMC9637213 DOI: 10.1038/s41598-022-23247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
One of the most common diseases that affects human brain is Parkinson's disease. Detection of Parkinson's disease (PD) poses a serious challenge. Robust methods for feature extraction allowing separation between the electroencephalograms (EEG) of healthy subjects and PD patients are required. We used the EEG records of healthy subjects and PD patients which were subject to auditory tasks. We used the common spatial patterns (CSP) and Laplacian mask as methods to allow robust selection and extraction of features. We used the derived CSP whitening matrix to determine those channels that are the most promising in the terms of differentiating between EEGs of healthy controls and of PD patients. Using the selection of features calculated using the CSP we managed to obtain the classification accuracy of 85% when classifying EEG records belonging to groups of controls or PD patients. Using the features calculated using the Laplacian operator we obtained the classification accuracy of 90%. Diagnosing the PD in early stages using EEG is possible. The CSP proved to be a promising technique to detect informative channels and to separate between the groups. Use of the combination of features calculated using the Laplacian offers good separability between the two groups.
Collapse
|
11
|
A Novel Method for Parkinson’s Disease Diagnosis Utilizing Treatment Protocols. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6871623. [PMID: 35958814 PMCID: PMC9363212 DOI: 10.1155/2022/6871623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
It makes no difference whether a person is male or female when it comes to neurodegenerative disorders; both sexes are equally susceptible to their devastating effects. Sometimes, it is unclear why a person in their life got a condition that is well-known in the world, such as Parkinson’s disease. Other times, it is evident why the individual obtained the ailment (PD). In modern times, a variety of cutting-edge algorithms that are based on treatment protocols have been developed for the purpose of diagnosing Parkinson’s disease. The approach that is presented in this article is the most current one; it was created using deep learning, and it can predict how severely Parkinson’s disease would affect a patient. In order to diagnose this condition, it is necessary to conduct a comprehensive medical history, a history of any past treatments, physical exams, and certain blood tests and brain films. Because they are less time-consuming and costly, diagnoses are becoming an increasingly important part of medical practice. The diagnosis of Parkinson’s disease by the physician is supported by the findings of the present research, which analyzed the voices of 253 participants. Preprocessing is done in order to get the most accurate results possible from the data. In order to carry out the technique of balancing, a methodical sampling approach was used to choose the data that would afterwards be evaluated. Using a feature selection approach that was determined by the magnitude of the label’s influence, many data groups were created and organized. DT, SVM, and kNN are three methods that are used in classification algorithms and performance assessment criteria. The model was developed as a result of selecting the classification method and data group that had the greatest performance value. This decision led to the creation of the model. During the process of building the model, the SVM technique was used, and data comprising 45% of the original data set were utilized. The information was arranged in descending order of significance, beginning with the most pertinent. In addition to achieving exceptional outcomes in every other aspect of the project, the performance accuracy target was successfully met at 86 percent. As a consequence of this, it has been decided that the physician will be provided with medical decision support with the assistance of the data set obtained from the speech recordings of the individual who may have Parkinson’s disease and the model that has been developed. This has led to the conclusion that medical decision support will be offered to the physician.
Collapse
|
12
|
Jahromi R, Zahed K, Sasangohar F, Erraguntla M, Mehta R, Qaraqe K. Hypoglycemia Detection Using Hand Tremors: A Home Study in Patients with Type 1 Diabetes (Preprint). JMIR Diabetes 2022; 8:e40990. [PMID: 37074783 PMCID: PMC10157461 DOI: 10.2196/40990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Diabetes affects millions of people worldwide and is steadily increasing. A serious condition associated with diabetes is low glucose levels (hypoglycemia). Monitoring blood glucose is usually performed by invasive methods or intrusive devices, and these devices are currently not available to all patients with diabetes. Hand tremor is a significant symptom of hypoglycemia, as nerves and muscles are powered by blood sugar. However, to our knowledge, no validated tools or algorithms exist to monitor and detect hypoglycemic events via hand tremors. OBJECTIVE In this paper, we propose a noninvasive method to detect hypoglycemic events based on hand tremors using accelerometer data. METHODS We analyzed triaxial accelerometer data from a smart watch recorded from 33 patients with type 1 diabetes for 1 month. Time and frequency domain features were extracted from acceleration signals to explore different machine learning models to classify and differentiate between hypoglycemic and nonhypoglycemic states. RESULTS The mean duration of the hypoglycemic state was 27.31 (SD 5.15) minutes per day for each patient. On average, patients had 1.06 (SD 0.77) hypoglycemic events per day. The ensemble learning model based on random forest, support vector machines, and k-nearest neighbors had the best performance, with a precision of 81.5% and a recall of 78.6%. The results were validated using continuous glucose monitor readings as ground truth. CONCLUSIONS Our results indicate that the proposed approach can be a potential tool to detect hypoglycemia and can serve as a proactive, nonintrusive alert mechanism for hypoglycemic events.
Collapse
Affiliation(s)
- Reza Jahromi
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Karim Zahed
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Farzan Sasangohar
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
- Center for Critical Care, Houston Methodist Hospital, Houston, TX, United States
| | - Madhav Erraguntla
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Ranjana Mehta
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
13
|
Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A Comprehensive Survey on the Detection, Classification, and Challenges of Neurological Disorders. BIOLOGY 2022; 11:469. [PMID: 35336842 PMCID: PMC8945195 DOI: 10.3390/biology11030469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
Neurological disorders (NDs) are becoming more common, posing a concern to pregnant women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms, each with its own set of origins, complications, and results. In recent years, the intricacy of brain functionalities has received a better understanding due to neuroimaging modalities, such as magnetic resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography (PET), etc. With high-performance computational tools and various machine learning (ML) and deep learning (DL) methods, these modalities have discovered exciting possibilities for identifying and diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology, leading to an overview of pre-processing and feature extraction techniques. The performance of existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article. A comprehensive portion of this study also shows various modalities and disease-specified datasets that detect and records images, signals, and speeches, etc. Limited related works are also summarized on NDs, as this domain has significantly fewer works focused on disease and detection criteria. Some of the standard evaluation metrics are also presented in this study for better result analysis and comparison. This research has also been outlined in a consistent workflow. At the conclusion, a mandatory discussion section has been included to elaborate on open research challenges and directions for future work in this emerging field.
Collapse
Affiliation(s)
- Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - M. Firoz Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
14
|
Yang M, Ma J, Wang P, Huang Z, Li Y, Liu H, Hameed Z. Hierarchical Boosting Dual-Stage Feature Reduction Ensemble Model for Parkinson's Disease Speech Data. Diagnostics (Basel) 2021; 11:diagnostics11122312. [PMID: 34943549 PMCID: PMC8700329 DOI: 10.3390/diagnostics11122312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
As a neurodegenerative disease, Parkinson's disease (PD) is hard to identify at the early stage, while using speech data to build a machine learning diagnosis model has proved effective in its early diagnosis. However, speech data show high degrees of redundancy, repetition, and unnecessary noise, which influence the accuracy of diagnosis results. Although feature reduction (FR) could alleviate this issue, the traditional FR is one-sided (traditional feature extraction could construct high-quality features without feature preference, while traditional feature selection could achieve feature preference but could not construct high-quality features). To address this issue, the Hierarchical Boosting Dual-Stage Feature Reduction Ensemble Model (HBD-SFREM) is proposed in this paper. The major contributions of HBD-SFREM are as follows: (1) The instance space of the deep hierarchy is built by an iterative deep extraction mechanism. (2) The manifold features extraction method embeds the nearest neighbor feature preference method to form the dual-stage feature reduction pair. (3) The dual-stage feature reduction pair is iteratively performed by the AdaBoost mechanism to obtain instances features with higher quality, thus achieving a substantial improvement in model recognition accuracy. (4) The deep hierarchy instance space is integrated into the original instance space to improve the generalization of the algorithm. Three PD speech datasets and a self-collected dataset are used to test HBD-SFREM in this paper. Compared with other FR algorithms and deep learning algorithms, the accuracy of HBD-SFREM in PD speech recognition is improved significantly and would not be affected by a small sample dataset. Thus, HBD-SFREM could give a reference for other related studies.
Collapse
Affiliation(s)
- Mingyao Yang
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
| | - Jie Ma
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
| | - Pin Wang
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
| | - Zhiyong Huang
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
- Correspondence: (Z.H.); (Y.L.); Tel.: +86-138-83216321 (Z.H.); +86-023-65103544 (Y.L.)
| | - Yongming Li
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
- Correspondence: (Z.H.); (Y.L.); Tel.: +86-138-83216321 (Z.H.); +86-023-65103544 (Y.L.)
| | - He Liu
- Chongqing Academy of Educational Sciences, Chongqing 400000, China;
| | - Zeeshan Hameed
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400000, China; (M.Y.); (J.M.); (P.W.); (Z.H.)
| |
Collapse
|
15
|
Ali L, He Z, Cao W, Rauf HT, Imrana Y, Bin Heyat MB. MMDD-Ensemble: A Multimodal Data-Driven Ensemble Approach for Parkinson's Disease Detection. Front Neurosci 2021; 15:754058. [PMID: 34790091 PMCID: PMC8591047 DOI: 10.3389/fnins.2021.754058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurological disease having no specific medical test for its diagnosis. In this study, we consider PD detection based on multimodal voice data that was collected through two channels, i.e., Smart Phone (SP) and Acoustic Cardioid (AC). Four types of data modalities were collected through each channel, namely sustained phonation (P), speech (S), voiced (V), and unvoiced (U) modality. The contributions of this paper are twofold. First, it explores optimal data modality and features having better information about PD. Second, it proposes a MultiModal Data-Driven Ensemble (MMDD-Ensemble) approach for PD detection. The MMDD-Ensemble has two levels. At the first level, different base classifiers are developed that are driven by multimodal voice data. At the second level, the predictions of the base classifiers are fused using blending and voting methods. In order to validate the robustness of the propose method, six evaluation measures, namely accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC), are adopted. The proposed method outperformed the best results produced by optimal unimodal framework from both the key evaluation aspects, i.e., accuracy and AUC. Furthermore, the proposed method also outperformed other state-of-the-art ensemble models. Experimental results show that the proposed multimodal approach yields 96% accuracy, 100% sensitivity, 88.88% specificity, 0.914 of MCC, and 0.986 of AUC. These results are promising compared to the recently reported results for PD detection based on multimodal voice data.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Electrical Engineering, University of Science and Technology, Bannu, Pakistan
| | - Zhiquan He
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
| | - Wenming Cao
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
| | - Hafiz Tayyab Rauf
- Faculty of Engineering & Informatics, University of Bradford, Bradford, United Kingdom
| | - Yakubu Imrana
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Md Belal Bin Heyat
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Evolving fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study of lupus nephritis. Comput Biol Med 2021; 135:104582. [PMID: 34214940 DOI: 10.1016/j.compbiomed.2021.104582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023]
Abstract
Because of its simplicity and effectiveness, fuzzy K-nearest neighbors (FKNN) is widely used in literature. The parameters have an essential impact on the performance of FKNN. Hence, the parameters need to be attuned to suit different problems. Also, choosing more representative features can enhance the performance of FKNN. This research proposes an improved optimization technique based on the sine cosine algorithm (LSCA), which introduces a linear population size reduction mechanism for enhancing the original algorithm's performance. Moreover, we developed an FKNN model based on the LSCA, it simultaneously performs feature selection and parameter optimization. Firstly, the search performance of LSCA is verified on the IEEE CEC2017 benchmark test function compared to the classical and improved algorithms. Secondly, the validity of the LSCA-FKNN model is verified on three medical datasets. Finally, we used the proposed LSCA-FKNN to predict lupus nephritis classes, and the model showed competitive results. The paper will be supported by an online web service for any question at https://aliasgharheidari.com.
Collapse
|
17
|
Hoq M, Uddin MN, Park SB. Vocal Feature Extraction-Based Artificial Intelligent Model for Parkinson's Disease Detection. Diagnostics (Basel) 2021; 11:diagnostics11061076. [PMID: 34208330 PMCID: PMC8231105 DOI: 10.3390/diagnostics11061076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
As a neurodegenerative disorder, Parkinson’s disease (PD) affects the nerve cells of the human brain. Early detection and treatment can help to relieve the symptoms of PD. Recent PD studies have extracted the features from vocal disorders as a harbinger for PD detection, as patients face vocal changes and impairments at the early stages of PD. In this study, two hybrid models based on a Support Vector Machine (SVM) integrating with a Principal Component Analysis (PCA) and a Sparse Autoencoder (SAE) are proposed to detect PD patients based on their vocal features. The first model extracted and reduced the principal components of vocal features based on the explained variance of each feature using PCA. For the first time, the second model used a novel Deep Neural Network (DNN) of an SAE, consisting of multiple hidden layers with L1 regularization to compress the vocal features into lower-dimensional latent space. In both models, reduced features were fed into the SVM as inputs, which performed classification by learning hyperplanes, along with projecting the data into a higher dimension. An F1-score, a Mathews Correlation Coefficient (MCC), and a Precision-Recall curve were used, along with accuracy to evaluate the proposed models due to highly imbalanced data. With its highest accuracy of 0.935, F1-score of 0.951, and MCC value of 0.788, the probing results show that the proposed model of the SAE-SVM surpassed not only the former model of the PCA-SVM and other standard models including Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), and Random Forest (RF), but also surpassed two recent studies using the same dataset. Oversampling and balancing the dataset with SMOTE boosted the performance of the models.
Collapse
Affiliation(s)
- Muntasir Hoq
- Department of Computer Science and Engineering, East Delta University, Chattogram 4209, Bangladesh;
| | - Mohammed Nazim Uddin
- Department of Computer Science and Engineering, East Delta University, Chattogram 4209, Bangladesh;
- Correspondence:
| | - Seung-Bo Park
- Department of Software Convergence Engineering, Inha University, Incheon 22201, Korea;
| |
Collapse
|
18
|
Yücelbaş C. A new approach: information gain algorithm-based k-nearest neighbors hybrid diagnostic system for Parkinson's disease. Phys Eng Sci Med 2021; 44:511-524. [PMID: 33852120 DOI: 10.1007/s13246-021-01001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a slow and insidiously progressive neurological brain disorder. The development of expert systems capable of automatically and highly accurately diagnosing early stages of PD based on speech signals would provide an important contribution to the health sector. For this purpose, the Information Gain Algorithm-based K-Nearest Neighbors (IGKNN) model was developed. This approach was applied to the feature data sets formed using the Tunable Q-factor Wavelet Transform (TQWT) method. First, 12 sub-feature data sets forming the TQWT feature group were analyzed separately after which the one with the best performance was selected, and the IGKNN model was applied to this sub-feature data set. Finally, it was observed that the performance results provided with the IGKNN system for this sub-feature data set were better than those for the complete set of data. According to the results, values of receiver operating characteristic and precision-recall curves exceeded 0.95, and a classification accuracy of almost 98% was obtained with the 22 features selected from this sub-group. In addition, the kappa coefficient was 0.933 and showed a perfect agreement between actual and predicted values. The performance of the IGKNN system was also compared with results from other studies in the literature in which the same data were used, and the approach proposed in this study far outperformed any approaches reported in the literature. Also, as in this IGKNN approach, an expert system that can diagnose PD and achieve maximum performance with fewer features from the audio signals has not been previously encountered.
Collapse
Affiliation(s)
- Cüneyt Yücelbaş
- Electrical-Electronics Engineering Department, Hakkari University, 30000, Hakkari, Turkey.
| |
Collapse
|
19
|
Gunduz H. An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102452] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
A computerized method to assess Parkinson’s disease severity from gait variability based on gender. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Li Y, Zhang X, Wang P, Zhang X, Liu Y. Insight into an unsupervised two-step sparse transfer learning algorithm for speech diagnosis of Parkinson's disease. Neural Comput Appl 2021; 33:9733-9750. [PMID: 33584015 PMCID: PMC7871026 DOI: 10.1007/s00521-021-05741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
Speech diagnosis of Parkinson’s disease (PD) as a non-invasive and simple diagnosis method is particularly worth exploring. However, the number of samples of speech-based PD is relatively small, and there exist discrepancies in the distribution between subjects. In order to solve the two problems, a novel unsupervised two-step sparse transfer learning is proposed in this paper to tackle with PD speech diagnosis. In the first step, convolution sparse coding with the coordinate selection of samples and features is designed to learn speech structure from the source domain to replenish sample information of the target domain. In the second step, joint local structure distribution alignment is designed to maintain the neighbor relationship between the respective samples of the training set and test set, and reduce the distribution difference between the two domains at the same time. Two representative public PD speech datasets and one real-world PD speech dataset were exploited to verify the proposed method on PD speech diagnosis. Experimental results demonstrate that each step of the proposed method has a positive effect on the PD speech classification results, and it also delivers superior performance over the existing relative methods.
Collapse
Affiliation(s)
- Yongming Li
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400030 China
| | - Xinyue Zhang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400030 China
| | - Pin Wang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400030 China
| | - Xiaoheng Zhang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400030 China
- Chongqing Radio and TV University, Chongqing, 400052 China
| | - Yuchuan Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400030 China
| |
Collapse
|
22
|
Ye H, Wu P, Zhu T, Xiao Z, Zhang X, Zheng L, Zheng R, Sun Y, Zhou W, Fu Q, Ye X, Chen A, Zheng S, Heidari AA, Wang M, Zhu J, Chen H, Li J. Diagnosing Coronavirus Disease 2019 (COVID-19): Efficient Harris Hawks-Inspired Fuzzy K-Nearest Neighbor Prediction Methods. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:17787-17802. [PMID: 34786302 PMCID: PMC8545238 DOI: 10.1109/access.2021.3052835] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 05/26/2023]
Abstract
This study is devoted to proposing a useful intelligent prediction model to distinguish the severity of COVID-19, to provide a more fair and reasonable reference for assisting clinical diagnostic decision-making. Based on patients' necessary information, pre-existing diseases, symptoms, immune indexes, and complications, this article proposes a prediction model using the Harris hawks optimization (HHO) to optimize the Fuzzy K-nearest neighbor (FKNN), which is called HHO-FKNN. This model is utilized to distinguish the severity of COVID-19. In HHO-FKNN, the purpose of introducing HHO is to optimize the FKNN's optimal parameters and feature subsets simultaneously. Also, based on actual COVID-19 data, we conducted a comparative experiment between HHO-FKNN and several well-known machine learning algorithms, which result shows that not only the proposed HHO-FKNN can obtain better classification performance and higher stability on the four indexes but also screen out the key features that distinguish severe COVID-19 from mild COVID-19. Therefore, we can conclude that the proposed HHO-FKNN model is expected to become a useful tool for COVID-19 prediction.
Collapse
Affiliation(s)
- Hua Ye
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care MedicineThe 1st Affiliated Hospital, Wenzhou Medical UniversityWenzhou325000China
| | - Tianru Zhu
- The Second Clinical CollegeWenzhou Medical UniversityWenzhou325000China
| | - Zhongxiang Xiao
- Department of PharmacyAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Xie Zhang
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Long Zheng
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Rongwei Zheng
- Department of UrologyAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Yangjie Sun
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Weilong Zhou
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Qinlei Fu
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Xinxin Ye
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Ali Chen
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Shuang Zheng
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehran1417466191Iran
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore117417
| | - Mingjing Wang
- Institute of Research and Development, Duy Tan UniversityDa Nang550000Vietnam
| | - Jiandong Zhu
- Department of Surgical OncologyAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Huiling Chen
- College of Computer Science and Artificial IntelligenceWenzhou UniversityWenzhou325035China
| | - Jifa Li
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| |
Collapse
|
23
|
Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
|
25
|
Navaneeth B, Suchetha M. A dynamic pooling based convolutional neural network approach to detect chronic kidney disease. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Machine Learning Applied to Diagnosis of Human Diseases: A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155135] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human healthcare is one of the most important topics for society. It tries to find the correct effective and robust disease detection as soon as possible to patients receipt the appropriate cares. Because this detection is often a difficult task, it becomes necessary medicine field searches support from other fields such as statistics and computer science. These disciplines are facing the challenge of exploring new techniques, going beyond the traditional ones. The large number of techniques that are emerging makes it necessary to provide a comprehensive overview that avoids very particular aspects. To this end, we propose a systematic review dealing with the Machine Learning applied to the diagnosis of human diseases. This review focuses on modern techniques related to the development of Machine Learning applied to diagnosis of human diseases in the medical field, in order to discover interesting patterns, making non-trivial predictions and useful in decision-making. In this way, this work can help researchers to discover and, if necessary, determine the applicability of the machine learning techniques in their particular specialties. We provide some examples of the algorithms used in medicine, analysing some trends that are focused on the goal searched, the algorithm used, and the area of applications. We detail the advantages and disadvantages of each technique to help choose the most appropriate in each real-life situation, as several authors have reported. The authors searched Scopus, Journal Citation Reports (JCR), Google Scholar, and MedLine databases from the last decades (from 1980s approximately) up to the present, with English language restrictions, for studies according to the objectives mentioned above. Based on a protocol for data extraction defined and evaluated by all authors using PRISMA methodology, 141 papers were included in this advanced review.
Collapse
|
27
|
Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Zamini M, Hasheminejad SMH. A comprehensive survey of anomaly detection in banking, wireless sensor networks, social networks, and healthcare. INTELLIGENT DECISION TECHNOLOGIES 2019. [DOI: 10.3233/idt-170155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mohamad Zamini
- Department of Information Technology, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
29
|
Kadam VJ, Jadhav SM. Feature Ensemble Learning Based on Sparse Autoencoders for Diagnosis of Parkinson’s Disease. ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING 2019. [DOI: 10.1007/978-981-13-1513-8_58] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
30
|
Shukla AK, Singh P, Vardhan M. Medical Diagnosis of Parkinson Disease Driven by Multiple Preprocessing Technique with Scarce Lee Silverman Voice Treatment Data. ENGINEERING VIBRATION, COMMUNICATION AND INFORMATION PROCESSING 2019. [DOI: 10.1007/978-981-13-1642-5_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 2018. [DOI: 10.1007/s00521-018-3689-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Cai Z, Gu J, Wen C, Zhao D, Huang C, Huang H, Tong C, Li J, Chen H. An Intelligent Parkinson's Disease Diagnostic System Based on a Chaotic Bacterial Foraging Optimization Enhanced Fuzzy KNN Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:2396952. [PMID: 30034509 PMCID: PMC6032994 DOI: 10.1155/2018/2396952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, which has attracted more and more attention. Many artificial intelligence methods have been used for the diagnosis of PD. In this study, an enhanced fuzzy k-nearest neighbor (FKNN) method for the early detection of PD based upon vocal measurements was developed. The proposed method, an evolutionary instance-based learning approach termed CBFO-FKNN, was developed by coupling the chaotic bacterial foraging optimization with Gauss mutation (CBFO) approach with FKNN. The integration of the CBFO technique efficiently resolved the parameter tuning issues of the FKNN. The effectiveness of the proposed CBFO-FKNN was rigorously compared to those of the PD datasets in terms of classification accuracy, sensitivity, specificity, and AUC (area under the receiver operating characteristic curve). The simulation results indicated the proposed approach outperformed the other five FKNN models based on BFO, particle swarm optimization, Genetic algorithms, fruit fly optimization, and firefly algorithm, as well as three advanced machine learning methods including support vector machine (SVM), SVM with local learning-based feature selection, and kernel extreme learning machine in a 10-fold cross-validation scheme. The method presented in this paper has a very good prospect, which will bring great convenience to the clinicians to make a better decision in the clinical diagnosis.
Collapse
Affiliation(s)
- Zhennao Cai
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianhua Gu
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Chunyu Huang
- College of Computer Science and Technology, Changchun University of Science Technology, Changchun 130032, China
| | - Hui Huang
- College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Changfei Tong
- College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jun Li
- College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huiling Chen
- College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
33
|
Lahmiri S, Dawson DA, Shmuel A. Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures. Biomed Eng Lett 2017; 8:29-39. [PMID: 30603188 DOI: 10.1007/s13534-017-0051-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Parkinson's disease (PD) is a widespread degenerative syndrome that affects the nervous system. Its early appearing symptoms include tremor, rigidity, and vocal impairment (dysphonia). Consequently, speech indicators are important in the identification of PD based on dysphonic signs. In this regard, computer-aided-diagnosis systems based on machine learning can be useful in assisting clinicians in identifying PD patients. In this work, we evaluate the performance of machine learning based techniques for PD diagnosis based on dysphonia symptoms. Several machine learning techniques were considered and trained with a set of twenty-two voice disorder measurements to classify healthy and PD patients. These machine learning methods included linear discriminant analysis (LDA), k nearest-neighbors (k-NN), naïve Bayes (NB), regression trees (RT), radial basis function neural networks (RBFNN), support vector machine (SVM), and Mahalanobis distance classifier. We evaluated the performance of these methods by means of a tenfold cross validation protocol. Experimental results show that the SVM classifier achieved higher average performance than all other classifiers in terms of overall accuracy, G-mean, and area under the curve of the receiver operating characteristic plot. The SVM classifier achieved higher performance measures than the majority of the other classifiers also in terms of sensitivity, specificity, and F-measure statistics. The LDA, k-NN and RT achieved the highest average precision. The RBFNN method yielded the highest F-measure.; however, it performed poorly in terms of other performance metrics. Finally, t tests were performed to evaluate statistical significance of the results, confirming that the SVM outperformed most of the other classifiers on the majority of performance measures. SVM is a promising method for identifying PD patients based on classification of dysphonia measurements.
Collapse
Affiliation(s)
- Salim Lahmiri
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada
| | - Debra Ann Dawson
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada
| | - Amir Shmuel
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada.,4Physiology, McGill University, Montreal, QC Canada.,5Biomedical Engineering, McGill University, Montreal, QC Canada
| |
Collapse
|
34
|
Zhang YN. Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System Implementation. PARKINSON'S DISEASE 2017; 2017:6209703. [PMID: 29075547 PMCID: PMC5624169 DOI: 10.1155/2017/6209703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.
Collapse
Affiliation(s)
- Y. N. Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- College of Computer Science and Information Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
35
|
Wang Y, Wang AN, Ai Q, Sun HJ. An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Yuvaraj R, Rajendra Acharya U, Hagiwara Y. A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2756-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
37
|
Behroozi M, Sami A. A Multiple-Classifier Framework for Parkinson's Disease Detection Based on Various Vocal Tests. Int J Telemed Appl 2016; 2016:6837498. [PMID: 27190506 PMCID: PMC4844904 DOI: 10.1155/2016/6837498] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/27/2016] [Indexed: 11/20/2022] Open
Abstract
Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing Parkinson's disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset named "Parkinson Speech Dataset with Multiple Types of Sound Recordings" has a variety of vocal tests, which include sustained vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson's disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead into loss of valuable information. In order to address this issue, the classification setting must take what has been said into account. As a solution, we introduced a new framework that applies an independent classifier for each vocal test. The final classification result would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances classification accuracy up to 15%.
Collapse
Affiliation(s)
- Mahnaz Behroozi
- Department of CSE and IT, School of Electrical Engineering and Computer Science, Shiraz University, Shiraz 71348-51154, Iran
| | - Ashkan Sami
- Department of CSE and IT, School of Electrical Engineering and Computer Science, Shiraz University, Shiraz 71348-51154, Iran
| |
Collapse
|
38
|
An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.07.138] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Peker M. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. J Med Syst 2016; 40:116. [DOI: 10.1007/s10916-016-0477-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
|
40
|
Gürüler H. A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl 2016. [DOI: 10.1007/s00521-015-2142-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Zeng W, Wang C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf Sci (N Y) 2015. [DOI: 10.1016/j.ins.2015.04.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
|
43
|
Characterizing gait asymmetry via frequency sub-band components of the ground reaction force. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2014.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ma C, Ouyang J, Chen HL, Zhao XH. An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:985789. [PMID: 25484912 PMCID: PMC4251425 DOI: 10.1155/2014/985789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/26/2014] [Indexed: 11/17/2022]
Abstract
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance.
Collapse
Affiliation(s)
- Chao Ma
- College of Computer Science and Technology, Jilin University, No. 2699, QianJin Road, Changchun 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Jihong Ouyang
- College of Computer Science and Technology, Jilin University, No. 2699, QianJin Road, Changchun 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Hui-Ling Chen
- College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China
| | - Xue-Hua Zhao
- College of Computer Science and Technology, Jilin University, No. 2699, QianJin Road, Changchun 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
45
|
Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images. Comput Biol Med 2014; 53:55-64. [DOI: 10.1016/j.compbiomed.2014.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/04/2014] [Accepted: 07/20/2014] [Indexed: 01/19/2023]
|
46
|
Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 113:904-913. [PMID: 24485390 DOI: 10.1016/j.cmpb.2014.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/26/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
Elderly people are commonly affected by Parkinson's disease (PD) which is one of the most common neurodegenerative disorders due to the loss of dopamine-producing brain cells. People with PD's (PWP) may have difficulty in walking, talking or completing other simple tasks. Variety of medications is available to treat PD. Recently, researchers have found that voice signals recorded from the PWP is becoming a useful tool to differentiate them from healthy controls. Several dysphonia features, feature reduction/selection techniques and classification algorithms were proposed by researchers in the literature to detect PD. In this paper, hybrid intelligent system is proposed which includes feature pre-processing using Model-based clustering (Gaussian mixture model), feature reduction/selection using principal component analysis (PCA), linear discriminant analysis (LDA), sequential forward selection (SFS) and sequential backward selection (SBS), and classification using three supervised classifiers such as least-square support vector machine (LS-SVM), probabilistic neural network (PNN) and general regression neural network (GRNN). PD dataset was used from University of California-Irvine (UCI) machine learning database. The strength of the proposed method has been evaluated through several performance measures. The experimental results show that the combination of feature pre-processing, feature reduction/selection methods and classification gives a maximum classification accuracy of 100% for the Parkinson's dataset.
Collapse
Affiliation(s)
- M Hariharan
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Campus Pauh Putra, Perlis, Malaysia.
| | - Kemal Polat
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Abant Izzet Baysal University, 14280 Bolu, Turkey
| | - R Sindhu
- School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Campus Pauh Putra, Perlis, Malaysia
| |
Collapse
|