Ali L, Zhu C, Zhang Z, Liu Y. Automated Detection of Parkinson's Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network.
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019;
7:2000410. [PMID:
32166050 PMCID:
PMC6876932 DOI:
10.1109/jtehm.2019.2940900]
[Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022]
Abstract
Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is
reported that most of PD patients have voice impairments. But these voice impairments are
not perceptible to common listeners. Therefore, different machine learning methods have
been developed for automated PD detection. However, these methods either lack
generalization and clinically significant classification performance or face the problem
of subject overlap. Methods: To overcome the problems discussed above, we attempt to
develop a hybrid intelligent system that can automatically perform acoustic analysis of
voice signals in order to detect PD. The proposed intelligent system uses linear
discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for
hyperparameters optimization of neural network (NN) which is used as a predictive model.
Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.
Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on
multiple types of sustained phonations data in terms of accuracy, sensitivity,
specificity, and Matthew correlation coefficient. It achieves classification accuracy of
95% on training database and 100% on testing database using all the
extracted features. However, as the dataset is imbalanced in terms of gender, thus, to
obtain unbiased results, we eliminated the gender dependent features and obtained accuracy
of 80% for training database and 82.14% for testing database, which seems to
be more unbiased results. Conclusion: Compared with the previous machine learning methods,
the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical
Impact: The experimental results suggest that the proposed automated diagnostic system has
the potential to classify PD patients from healthy subjects. Additionally, in future the
proposed method can also be exploited for prodromal and differential diagnosis, which are
considered challenging tasks.
Collapse