1
|
Duc MN, Liu X, Tony B, Edward Y, Vu TT, Poornima B, Thuan ND, Alistair M, Pierre Q. Investigation of Myocardial Bioimpedance at Multiple Frequencies for Cardiac Radiofrequency Ablation: Ex-Vivo Experiments. IEEE Trans Biomed Eng 2025; 72:1837-1847. [PMID: 40030798 DOI: 10.1109/tbme.2024.3524269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BACKGROUND Bioimpedance method is used clinically as a surrogate measure of effective tissue heating during cardiac ablation. It does not, however provide information regarding thermal cellular destruction which is the goal of ablation procedures. OBJECTIVE This study investigated myocardial impedance (resistance and reactance) at different frequencies in response to the thermal effect and across temperatures where tissue necrosis occurs during ablation. METHODS An ex-vivo experiment bench was designed to heat heart muscle tissue blocks uniformly to different targeted temperatures. Tissue resistance and reactance were recorded at three frequencies of 5 k, 50 k and 250 kHz. Impedance was measured in 3 phases (1) the relationship of tissue impedance with thermal effect at temperatures < 50 °C, (2) impedance change at 55 °C to 85 °C at which cellular necrosis occurs, and (3) post-ablation impedance during restitution back to 37 °C$.$ Results: Myocardial resistance and reactance demonstrated a strong linear relationship with temperature effect within the tissue (-1.3%/ °C and -1.96%/ °C on average respectively, frequency dependent). At ≥ 65 °C, the reactance was almost abolished (∼0Ω) and stayed flat during the restitution back to 37 °C, potentially indicative of complete necrosis. Time to reactance abolishment was a few seconds for ≥ 75 °C, 17 seconds for 65 °C and few minutes for 55 °C. CONCLUSION Myocardial impedance behaviour thermal and necrotic effects were straightforward and observable. Changes in reactance can be used as a potential indicator of cellular necrosis. SIGNIFICANCE Data provided can be used to develop better models and solutions for monitoring the efficacy of cardiac ablation procedures, thus enhancing clinical outcomes.
Collapse
|
2
|
Ngo AH, Hoang MT, Nguyen PL, Nguyen TV, Nguyen DT, Nguyen MD. Catheter-to-tissue contact angle's effect on lesion formation and characterisation using multichannel bioimpedance method. Physiol Meas 2025; 46:055001. [PMID: 40273937 DOI: 10.1088/1361-6579/add07f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Objective.Radiofrequency (RF) catheter ablation is a standard treatment for patients with cardiac arrhythmias, providing an efficient, minimally invasive solution. However, the ablation efficiency remains suboptimal due to numerous contributed factors that are overlooked in the literature and not monitored during the procedure. This paper explores the effect of catheter-to-tissue contact angles on lesion formations and the feasibility of the multichannel bioimpedance method in characterising the angles to inform cardiologists.Approach.Two silico simulations based on a realistic human model were built to: (1) simulate lesion formations with different catheter-to-tissue angles under varying conditions of powers and convection cooling, and (2) simulate multichannel bioimpedances measured at each catheter's location and angle. 13 locations were picked in all four chambers with 3 contact conditions (catheter lies along the muscle (0° and 180°), in perpendicular to the muscle (90°) and in middle angles (45° and 135°)). 64 electrodes divided into 4 bands were placed on the thorax for multichannel bioimpedances (3-terminal) measured between the catheter's second electrode E2 (I+,V+), and each pair of adjacent surface electrodes (I-,V-). ANOVA and Tukey's Honestly Significant Difference (HSD) tests were used to evaluate the contact angle's effect on the lesion formations and the bioimpedance's capability in distinguishing between angles.Main results.The results showed that 0° and 180° configurations generated significantly different lesions from other angles. The multichannel bioimpedances could recognise 0°/180° from other angles and correlated moderately to lesion sizes at low ablation power.Significance.This paper concludes that catheter-to-tissue angles can influence the lesion outcomes significantly and the multichannel bioimpedance is able to detect the angles that matter.
Collapse
Affiliation(s)
- Anh Huyen Ngo
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Minh Thao Hoang
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Phuong Linh Nguyen
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thu Van Nguyen
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Duc Thuan Nguyen
- International University-Vietnam National University, Hanoi, Vietnam
| | - Minh Duc Nguyen
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
- Westmead Applied Research Centre, University of Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Wang Q, Chen X, Wang D, Wang Z, Zhang X, Xie N, Liu L. Regularization Solver Guided FISTA for Electrical Impedance Tomography. SENSORS (BASEL, SWITZERLAND) 2023; 23:2233. [PMID: 36850826 PMCID: PMC9964865 DOI: 10.3390/s23042233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Electrical impedance tomography (EIT) is non-destructive monitoring technology that can visualize the conductivity distribution in the observed area. The inverse problem for imaging is characterized by a serious nonlinear and ill-posed nature, which leads to the low spatial resolution of the reconstructions. The iterative algorithm is an effective method to deal with the imaging inverse problem. However, the existing iterative imaging methods have some drawbacks, such as random and subjective initial parameter setting, very time consuming in vast iterations and shape blurring with less high-order information, etc. To solve these problems, this paper proposes a novel fast convergent iteration method for solving the inverse problem and designs an initial guess method based on an adaptive regularization parameter adjustment. This method is named the Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm (RS-FISTA). The iterative solution process under the L1-norm regular constraint is derived in the LASSO problem. Meanwhile, the Nesterov accelerator is introduced to accelerate the gradient optimization race in the ISTA method. In order to make the initial guess contain more prior information and be independent of subjective factors such as human experience, a new adaptive regularization weight coefficient selection method is introduced into the initial conjecture of the FISTA iteration as it contains more accurate prior information of the conductivity distribution. The RS-FISTA method is compared with the methods of Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA, six different distributions with their optimal parameters. The SSIM, RMSE and PSNR of RS-FISTA methods are 0.7253, 3.44 and 37.55, respectively. In the performance test of convergence, the evaluation metrics of this method are relatively stable at 30 iterations. This shows that the proposed method not only has better visualization, but also has fast convergence. It is verified that the RS-FISTA algorithm is the better algorithm for EIT reconstruction from both simulation and physical experiments.
Collapse
Affiliation(s)
- Qian Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyan Chen
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Di Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zichen Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinyu Zhang
- College of Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Na Xie
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lili Liu
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation. FLUIDS 2021. [DOI: 10.3390/fluids6080294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, a fully coupled electro-thermo-mechanical model of radiofrequency (RF)-assisted cardiac ablation has been developed, incorporating fluid–structure interaction, thermal relaxation time effects and porous media approach. A non-Fourier based bio-heat transfer model has been used for predicting the temperature distribution and ablation zone during the cardiac ablation. The blood has been modeled as a Newtonian fluid and the velocity fields are obtained utilizing the Navier–Stokes equations. The thermal stresses induced due to the heating of the cardiac tissue have also been accounted. Parametric studies have been conducted to investigate the effect of cardiac tissue porosity, thermal relaxation time effects, electrode insertion depths and orientations on the treatment outcomes of the cardiac ablation. The results are presented in terms of predicted temperature distributions and ablation volumes for different cases of interest utilizing a finite element based COMSOL Multiphysics software. It has been found that electrode insertion depth and orientation has a significant effect on the treatment outcomes of cardiac ablation. Further, porosity of cardiac tissue also plays an important role in the prediction of temperature distribution and ablation volume during RF-assisted cardiac ablation. Moreover, thermal relaxation times only affect the treatment outcomes for shorter treatment times of less than 30 s.
Collapse
|
5
|
Poni R, Neufeld E, Capstick M, Bodis S, Samaras T, Kuster N. Feasibility of Temperature Control by Electrical Impedance Tomography in Hyperthermia. Cancers (Basel) 2021; 13:3297. [PMID: 34209300 PMCID: PMC8268554 DOI: 10.3390/cancers13133297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
We present a simulation study investigating the feasibility of electrical impedance tomography (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we developed reconstruction methods and investigated the achievable accuracy of EIT by simulating HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity distributions. The impact of the size and location of the heated region, the voltage measurement signal-to-noise ratio, and the reference model personalization and accuracy were studied. Results showed that by introducing an iterative reconstruction approach, combined with adaptive prior regions and tissue-dependent penalties, planning-based reference models, measurement-based reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout the heated domain, with an accuracy of around 5% and cm-scale spatial resolution. An initial exploration of the use of multifrequency EIT to separate temperature and perfusion effects yielded promising results, indicating that temperature reconstruction accuracy can be in the order of 1 ∘C. Our results suggest that EIT can provide valuable real-time HT monitoring capabilities. Experimental confirmation in real-world conditions is the next step.
Collapse
Affiliation(s)
- Redi Poni
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Esra Neufeld
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Myles Capstick
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Stephan Bodis
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Niels Kuster
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| |
Collapse
|
6
|
Qian PC, Nguyen DM, Barry MA, Tran V, Lu J, Thiagalingam A, Thomas SP, McEwan A. Optimizing Impedance Change Measurement During Radiofrequency Ablation Enables More Accurate Characterization of Lesion Formation. JACC Clin Electrophysiol 2020; 7:471-481. [PMID: 33888268 DOI: 10.1016/j.jacep.2020.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study sought to determine whether a novel impedance thermal imaging system (ITIS) provides an impedance measurement that is better correlated with lesion dimensions than circuit impedance during radiofrequency (RF) ablation. BACKGROUND A 5- to 10-Ω impedance drop is clinically used to corroborate an effective RF ablation lesion. However, the contribution of local tissue heating to circuit impedance change is small and dependent on the local environment of the catheter and placement of the grounding patch. METHODS ITIS uses ablation catheter and skin electrodes to perform 4-terminal impedance measurements with separate voltage sensing and current injection electrode pairs. Seven sheep underwent endocardial ventricular irrigated RF ablation at 40 W for 60 s. ITIS impedance and circuit impedance were both measured throughout ablation. When the sheep were sacrificed, ablation lesions were cut along their long axis; the depth, width, and surface area of the cut surface were measured. RESULTS A total of 68 RF ablations were performed, with a median depth of 3.5 mm (interquartile range [IQR]: 2.1 to 4.9 mm), width of 8.3 mm (IQR: 5.7 to 10.8 mm), and surface area of 23.8 mm2 (IQR: 9.3 to 43.0 mm2). ITIS impedance change had good correlation with lesion depth, width, and surface area (R = 0.76, R = 0.87, and R = 0.87, respectively); and superior to circuit impedance for lesion depth, width, and surface area (p = 0.0018, p = 0.0004, and p = 0.0001, respectively). CONCLUSIONS By optimizing the current path and using 4-terminal impedance measurement during RF ablation, the contribution of tissue temperature changes to measured impedance is better standardized to provide a more reliable measure than conventional ablation circuit impedance.
Collapse
Affiliation(s)
- Pierre C Qian
- Westmead Hospital, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia.
| | - Duc Minh Nguyen
- Faculty of Engineering and Information Technology, University of Sydney, Sydney, Australia; Department of Biomedical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Michael Anthony Barry
- Westmead Hospital, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia; Faculty of Engineering and Information Technology, University of Sydney, Sydney, Australia
| | - Vu Tran
- Westmead Hospital, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia
| | - Juntang Lu
- Westmead Hospital, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia
| | - Aravinda Thiagalingam
- Westmead Hospital, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia
| | - Stuart P Thomas
- Westmead Hospital, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Westmead Applied Research Centre, Sydney, Australia
| | - Alistair McEwan
- Faculty of Engineering and Information Technology, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Singh S, Melnik R. Computational Modeling of Cardiac Ablation Incorporating Electrothermomechanical Interactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1115/1.4048536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
The application of radio frequency ablation (RFA) has been widely explored in treating various types of cardiac arrhythmias. Computational modeling provides a safe and viable alternative to ex vivo and in vivo experimental studies for quantifying the effects of different variables efficiently and reliably, apart from providing a priori estimates of the ablation volume attained during cardiac ablation procedures. In this contribution, we report a fully coupled electrothermomechanical model for a more accurate prediction of the treatment outcomes during the radio frequency cardiac ablation. A numerical model comprising of cardiac tissue and the cardiac chamber has been developed in which an electrode has been inserted perpendicular to the cardiac tissue to simulate actual clinical procedures. Temperature-dependent heat capacity, electrical and thermal conductivities, and blood perfusion rate have been considered to model more realistic scenarios. The effects of blood flow and contact force of the electrode tip on the treatment outcomes of a fully coupled model of RFA have been systematically investigated. The numerical study demonstrates that the predicted ablation volume of RFA is significantly dependent on the blood flow rate in the cardiac chamber and also on the tissue deformation induced due to electrode insertion depth of 1.5 mm or higher.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5, Canada; Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao E-48009, Spain
| |
Collapse
|
8
|
Qian PC, Barry MA, Tran VT, Lu J, McEwan A, Thiagalingam A, Thomas SP. Irrigated Microwave Catheter Ablation Can Create Deep Ventricular Lesions Through Epicardial Fat With Relative Sparing of Adjacent Coronary Arteries. Circ Arrhythm Electrophysiol 2020; 13:e008251. [PMID: 32299229 DOI: 10.1161/circep.119.008251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Radiofrequency ablation depth can be inadequate to reach intramural or epicardial substrate, and energy delivery in the pericardium is limited by penetration through epicardial fat and coronary anatomy. We hypothesized that open irrigated microwave catheter ablation can create deep myocardial lesions endocardially and epicardially though fat while acutely sparing nearby the coronary arteries. METHODS In-house designed and constructed irrigated microwave catheters were tested in in vitro phantom models and in 15 sheep. Endocardial ablations were performed at 140 to 180 W for 4 minutes; epicardial ablations via subxiphoid access were performed at 90 to 100 W for 4 minutes at sites near coronary arteries. RESULTS Epicardial ablations at 90 to 100 W produced mean lesion depth of 10±4 mm, width 18±10 mm, and length 29±8 mm through median epicardial fat thickness of 1.2 mm. Endocardial ablations at 180 W reached depths of 10.7±3.3 mm, width of 16.6±5 mm, and length of 20±5 mm. Acute coronary occlusion or spasm was not observed at a median separation distance of 2.7 mm (IQR, 1.2-3.4 mm). Saline electrodes recorded unipolar and bipolar electrograms; microwave ablation caused reductions in voltage and changes in electrogram morphology with loss of pace-capture. In vitro models demonstrated the heat sink effect of coronary flow, as well as preferential microwave coupling to myocardium and blood as opposed to lung and epicardial fat phantoms. CONCLUSIONS Irrigated microwave catheter ablation may be an effective ablation modality for deep ventricular lesion creation with capacity for fat penetration and sparing of nearby coronary arteries because of cooling endoluminal flow. Clinical translation could improve the treatment of ventricular tachycardia arising from mid myocardial or epicardial substrates.
Collapse
Affiliation(s)
- Pierre C Qian
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia.,Sydney Medical School (P.C.Q., A.T., S.P.T.), University of Sydney, Australia.,The Westmead Institute for Medical Research (P.C.Q., A.T., S.P.T.), University of Sydney, Australia
| | - Michael A Barry
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia.,School of Electrical and Information Engineering (M.A.B., A.M.), University of Sydney, Australia
| | - Vu T Tran
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia
| | - Juntang Lu
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia
| | - Alistair McEwan
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia.,School of Electrical and Information Engineering (M.A.B., A.M.), University of Sydney, Australia
| | - Aravinda Thiagalingam
- Sydney Medical School (P.C.Q., A.T., S.P.T.), University of Sydney, Australia.,The Westmead Institute for Medical Research (P.C.Q., A.T., S.P.T.), University of Sydney, Australia
| | - Stuart P Thomas
- Cardiology Department, Westmead Hospital (P.C.Q., M.A.B., V.T.T., J.L., A.T., S.P.T.), University of Sydney, Australia.,Sydney Medical School (P.C.Q., A.T., S.P.T.), University of Sydney, Australia.,The Westmead Institute for Medical Research (P.C.Q., A.T., S.P.T.), University of Sydney, Australia
| |
Collapse
|