1
|
Bilal A, Alkhathlan A, Kateb FA, Tahir A, Shafiq M, Long H. A quantum-optimized approach for breast cancer detection using SqueezeNet-SVM. Sci Rep 2025; 15:3254. [PMID: 39863687 PMCID: PMC11763032 DOI: 10.1038/s41598-025-86671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy. The proposed Q-BGWO-SQSVM approach utilizes an improved quantum-inspired binary Grey Wolf Optimizer and combines it with SqueezeNet and Support Vector Machines to exhibit sophisticated performance. SqueezeNet's fire modules and complex bypass mechanisms extract distinct features from mammography images. Then, these features are optimized by the Q-BGWO for determining the best SVM parameters. Since the current CAD system is more reliable, accurate, and sensitive, its application is advantageous for healthcare. The proposed Q-BGWO-SQSVM was evaluated using diverse databases: MIAS, INbreast, DDSM, and CBIS-DDSM, analyzing its performance regarding accuracy, sensitivity, specificity, precision, F1 score, and MCC. Notably, on the CBIS-DDSM dataset, the Q-BGWO-SQSVM achieved remarkable results at 99% accuracy, 98% sensitivity, and 100% specificity in 15-fold cross-validation. Finally, it can be observed that the performance of the designed Q-BGWO-SQSVM model is excellent, and its potential realization in other datasets and imaging conditions is promising. The novel Q-BGWO-SQSVM model outperforms the state-of-the-art classification methods and offers accurate and reliable early breast cancer detection, which is essential for further healthcare development.
Collapse
Affiliation(s)
- Anas Bilal
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Ali Alkhathlan
- Department of Computer Science, Faculty of Computing and Information Technology, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Faris A Kateb
- Department of Information Technology, Faculty of Computing and Information Technology, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Alishba Tahir
- Shifa College of Medicine, Shifa Tamere Milat University, Islamabad, Pakistan
| | - Muhammad Shafiq
- School of Information Engineering, Qujing Normal University, Yunnan, China
| | - Haixia Long
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Pérez-Núñez JR, Rodríguez C, Vásquez-Serpa LJ, Navarro C. The Challenge of Deep Learning for the Prevention and Automatic Diagnosis of Breast Cancer: A Systematic Review. Diagnostics (Basel) 2024; 14:2896. [PMID: 39767257 PMCID: PMC11675111 DOI: 10.3390/diagnostics14242896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES This review aims to evaluate several convolutional neural network (CNN) models applied to breast cancer detection, to identify and categorize CNN variants in recent studies, and to analyze their specific strengths, limitations, and challenges. METHODS Using PRISMA methodology, this review examines studies that focus on deep learning techniques, specifically CNN, for breast cancer detection. Inclusion criteria encompassed studies from the past five years, with duplicates and those unrelated to breast cancer excluded. A total of 62 articles from the IEEE, SCOPUS, and PubMed databases were analyzed, exploring CNN architectures and their applicability in detecting this pathology. RESULTS The review found that CNN models with advanced architecture and greater depth exhibit high accuracy and sensitivity in image processing and feature extraction for breast cancer detection. CNN variants that integrate transfer learning proved particularly effective, allowing the use of pre-trained models with less training data required. However, challenges include the need for large, labeled datasets and significant computational resources. CONCLUSIONS CNNs represent a promising tool in breast cancer detection, although future research should aim to create models that are more resource-efficient and maintain accuracy while reducing data requirements, thus improving clinical applicability.
Collapse
Affiliation(s)
- Jhelly-Reynaluz Pérez-Núñez
- Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru; (C.R.); (L.-J.V.-S.); (C.N.)
| | | | | | | |
Collapse
|
3
|
Karthiga R, Narasimhan K, V T, M H, Amirtharajan R. Review of AI & XAI-based breast cancer diagnosis methods using various imaging modalities. MULTIMEDIA TOOLS AND APPLICATIONS 2024. [DOI: 10.1007/s11042-024-20271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 01/02/2025]
|
4
|
Bilal A, Imran A, Liu X, Liu X, Ahmad Z, Shafiq M, El-Sherbeeny AM, Long H. BC-QNet: A quantum-infused ELM model for breast cancer diagnosis. Comput Biol Med 2024; 175:108483. [PMID: 38704900 DOI: 10.1016/j.compbiomed.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes.
Collapse
Affiliation(s)
- Anas Bilal
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Azhar Imran
- Department of Creative Technologies, Air University, Islamabad, 44000, Pakistan
| | - Xiaowen Liu
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Xiling Liu
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Zohaib Ahmad
- Department of Criminology & Forensic Sciences Technology, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Shafiq
- School of Information Engineering, Qujing Normal University, Yunnan, China
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Haixia Long
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
5
|
Bilal A, Imran A, Baig TI, Liu X, Abouel Nasr E, Long H. Breast cancer diagnosis using support vector machine optimized by improved quantum inspired grey wolf optimization. Sci Rep 2024; 14:10714. [PMID: 38730250 PMCID: PMC11087531 DOI: 10.1038/s41598-024-61322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
A prompt diagnosis of breast cancer in its earliest phases is necessary for effective treatment. While Computer-Aided Diagnosis systems play a crucial role in automated mammography image processing, interpretation, grading, and early detection of breast cancer, existing approaches face limitations in achieving optimal accuracy. This study addresses these limitations by hybridizing the improved quantum-inspired binary Grey Wolf Optimizer with the Support Vector Machines Radial Basis Function Kernel. This hybrid approach aims to enhance the accuracy of breast cancer classification by determining the optimal Support Vector Machine parameters. The motivation for this hybridization lies in the need for improved classification performance compared to existing optimizers such as Particle Swarm Optimization and Genetic Algorithm. Evaluate the efficacy of the proposed IQI-BGWO-SVM approach on the MIAS dataset, considering various metric parameters, including accuracy, sensitivity, and specificity. Furthermore, the application of IQI-BGWO-SVM for feature selection will be explored, and the results will be compared. Experimental findings demonstrate that the suggested IQI-BGWO-SVM technique outperforms state-of-the-art classification methods on the MIAS dataset, with a resulting mean accuracy, sensitivity, and specificity of 99.25%, 98.96%, and 100%, respectively, using a tenfold cross-validation datasets partition.
Collapse
Affiliation(s)
- Anas Bilal
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Azhar Imran
- Department of Creative Technologies, Air University, Islamabad, 44000, Pakistan
| | - Talha Imtiaz Baig
- School of Life Science and Technology, University of Electronic Science and Technology of China UESTC, Chengdu, Sichuan, China
| | - Xiaowen Liu
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China
| | - Emad Abouel Nasr
- Industrial Engineering Department, College of Engineering, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Haixia Long
- College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
6
|
Aguerchi K, Jabrane Y, Habba M, El Hassani AH. A CNN Hyperparameters Optimization Based on Particle Swarm Optimization for Mammography Breast Cancer Classification. J Imaging 2024; 10:30. [PMID: 38392079 PMCID: PMC10889268 DOI: 10.3390/jimaging10020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024] Open
Abstract
Breast cancer is considered one of the most-common types of cancers among females in the world, with a high mortality rate. Medical imaging is still one of the most-reliable tools to detect breast cancer. Unfortunately, manual image detection takes much time. This paper proposes a new deep learning method based on Convolutional Neural Networks (CNNs). Convolutional Neural Networks are widely used for image classification. However, the determination process for accurate hyperparameters and architectures is still a challenging task. In this work, a highly accurate CNN model to detect breast cancer by mammography was developed. The proposed method is based on the Particle Swarm Optimization (PSO) algorithm in order to look for suitable hyperparameters and the architecture for the CNN model. The CNN model using PSO achieved success rates of 98.23% and 97.98% on the DDSM and MIAS datasets, respectively. The experimental results proved that the proposed CNN model gave the best accuracy values in comparison with other studies in the field. As a result, CNN models for mammography classification can now be created automatically. The proposed method can be considered as a powerful technique for breast cancer prediction.
Collapse
Affiliation(s)
| | - Younes Jabrane
- MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Maryam Habba
- National School of Applied Sciences of Safi, Cadi Ayyad University, Safi 46000, Morocco
| | - Amir Hajjam El Hassani
- Nanomedicine Imagery & Therapeutics Laboratory, EA4662-Bourgogne-Franche-Comté University, 90010 Belfort, France
| |
Collapse
|
7
|
Razali NF, Isa IS, Sulaiman SN, A. Karim NK, Osman MK. CNN-Wavelet scattering textural feature fusion for classifying breast tissue in mammograms. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
ME-CCNN: Multi-encoded images and a cascade convolutional neural network for breast tumor segmentation and recognition. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Elkorany AS, Elsharkawy ZF. Efficient breast cancer mammograms diagnosis using three deep neural networks and term variance. Sci Rep 2023; 13:2663. [PMID: 36792720 PMCID: PMC9932150 DOI: 10.1038/s41598-023-29875-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Breast cancer (BC) is spreading more and more every day. Therefore, a patient's life can be saved by its early discovery. Mammography is frequently used to diagnose BC. The classification of mammography region of interest (ROI) patches (i.e., normal, malignant, or benign) is the most crucial phase in this process since it helps medical professionals to identify BC. In this paper, a hybrid technique that carries out a quick and precise classification that is appropriate for the BC diagnosis system is proposed and tested. Three different Deep Learning (DL) Convolution Neural Network (CNN) models-namely, Inception-V3, ResNet50, and AlexNet-are used in the current study as feature extractors. To extract useful features from each CNN model, our suggested method uses the Term Variance (TV) feature selection algorithm. The TV-selected features from each CNN model are combined and a further selection is performed to obtain the most useful features which are sent later to the multiclass support vector machine (MSVM) classifier. The Mammographic Image Analysis Society (MIAS) image database was used to test the effectiveness of the suggested method for classification. The mammogram's ROI is retrieved, and image patches are assigned to it. Based on the results of testing several TV feature subsets, the 600-feature subset with the highest classification performance was discovered. Higher classification accuracy (CA) is attained when compared to previously published work. The average CA for 70% of training is 97.81%, for 80% of training, it is 98%, and for 90% of training, it reaches its optimal value. Finally, the ablation analysis is performed to emphasize the role of the proposed network's key parameters.
Collapse
Affiliation(s)
- Ahmed S. Elkorany
- grid.411775.10000 0004 0621 4712Department of Electronics and Electrical Comm. Eng., Faculty of Electronic Engineering, Menoufia University, Menouf, 32952 Egypt
| | - Zeinab F. Elsharkawy
- grid.429648.50000 0000 9052 0245Engineering Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Reenadevi R, Sathiyabhama B, Sankar S, Pandey D. Breast cancer detection in digital mammography using a novel hybrid approach of Salp Swarm and Cuckoo Search algorithm with deep belief network classifier. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2161149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R. Reenadevi
- Department of Computer Science and Engineering, Sona College of Technology, Salem, India
| | - B. Sathiyabhama
- Department of Computer Science and Engineering, Sona College of Technology, Salem, India
| | - S. Sankar
- Department of Computer Science and Engineering, Sona College of Technology, Salem, India
| | - Digvijay Pandey
- Department of Technical Education, IET, Dr A.P.J Abdul Kalam Technical University, Lucknow, India
| |
Collapse
|
11
|
An Efficient Method for Breast Mass Classification Using Pre-Trained Deep Convolutional Networks. MATHEMATICS 2022. [DOI: 10.3390/math10142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Masses are the early indicators of breast cancer, and distinguishing between benign and malignant masses is a challenging problem. Many machine learning- and deep learning-based methods have been proposed to distinguish benign masses from malignant ones on mammograms. However, their performance is not satisfactory. Though deep learning has been shown to be effective in a variety of applications, it is challenging to apply it for mass classification since it requires a large dataset for training and the number of available annotated mammograms is limited. A common approach to overcome this issue is to employ a pre-trained model and fine-tune it on mammograms. Though this works well, it still involves fine-tuning a huge number of learnable parameters with a small number of annotated mammograms. To tackle the small set problem in the training or fine-tuning of CNN models, we introduce a new method, which uses a pre-trained CNN without any modifications as an end-to-end model for mass classification, without fine-tuning the learnable parameters. The training phase only identifies the neurons in the classification layer, which yield higher activation for each class, and later on uses the activation of these neurons to classify an unknown mass ROI. We evaluated the proposed approach using different CNN models on the public domain benchmark datasets, such as DDSM and INbreast. The results show that it outperforms the state-of-the-art deep learning-based methods.
Collapse
|
12
|
|
13
|
Assari Z, Mahloojifar A, Ahmadinejad N. Discrimination of benign and malignant solid breast masses using deep residual learning-based bimodal computer-aided diagnosis system. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Parida PK, Dora L, Swain M, Agrawal S, Panda R. Data science methodologies in smart healthcare: a review. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Sasank V, Venkateswarlu S. An automatic tumour growth prediction based segmentation using full resolution convolutional network for brain tumour. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Breast Cancer Detection Using Mammogram Images with Improved Multi-Fractal Dimension Approach and Feature Fusion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer detection using mammogram images at an early stage is an important step in disease diagnostics. We propose a new method for the classification of benign or malignant breast cancer from mammogram images. Hybrid thresholding and the machine learning method are used to derive the region of interest (ROI). The derived ROI is then separated into five different blocks. The wavelet transform is applied to suppress noise from each produced block based on BayesShrink soft thresholding by capturing high and low frequencies within different sub-bands. An improved fractal dimension (FD) approach, called multi-FD (M-FD), is proposed to extract multiple features from each denoised block. The number of features extracted is then reduced by a genetic algorithm. Five classifiers are trained and used with the artificial neural network (ANN) to classify the extracted features from each block. Lastly, the fusion process is performed on the results of five blocks to obtain the final decision. The proposed approach is tested and evaluated on four benchmark mammogram image datasets (MIAS, DDSM, INbreast, and BCDR). We present the results of single- and double-dataset evaluations. Only one dataset is used for training and testing in the single-dataset evaluation, whereas two datasets (one for training, and one for testing) are used in the double-dataset evaluation. The experiment results show that the proposed method yields better results on the INbreast dataset in the single-dataset evaluation, whilst better results are obtained on the remaining datasets in the double-dataset evaluation. The proposed approach outperforms other state-of-the-art models on the Mini-MIAS dataset.
Collapse
|
17
|
Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|