1
|
Role of Four-Chamber Heart Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic Understanding. INFORMATICS 2022. [DOI: 10.3390/informatics9020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fetal echocardiogram is useful for monitoring and diagnosing cardiovascular diseases in the fetus in utero. Importantly, it can be used for assessing prenatal congenital heart disease, for which timely intervention can improve the unborn child’s outcomes. In this regard, artificial intelligence (AI) can be used for the automatic analysis of fetal heart ultrasound images. This study reviews nondeep and deep learning approaches for assessing the fetal heart using standard four-chamber ultrasound images. The state-of-the-art techniques in the field are described and discussed. The compendium demonstrates the capability of automatic assessment of the fetal heart using AI technology. This work can serve as a resource for research in the field.
Collapse
|
2
|
Barua PD, Chan WY, Dogan S, Baygin M, Tuncer T, Ciaccio EJ, Islam N, Cheong KH, Shahid ZS, Acharya UR. Multilevel Deep Feature Generation Framework for Automated Detection of Retinal Abnormalities Using OCT Images. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1651. [PMID: 34945957 PMCID: PMC8700736 DOI: 10.3390/e23121651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
Optical coherence tomography (OCT) images coupled with many learning techniques have been developed to diagnose retinal disorders. This work aims to develop a novel framework for extracting deep features from 18 pre-trained convolutional neural networks (CNN) and to attain high performance using OCT images. In this work, we have developed a new framework for automated detection of retinal disorders using transfer learning. This model consists of three phases: deep fused and multilevel feature extraction, using 18 pre-trained networks and tent maximal pooling, feature selection with ReliefF, and classification using the optimized classifier. The novelty of this proposed framework is the feature generation using widely used CNNs and to select the most suitable features for classification. The extracted features using our proposed intelligent feature extractor are fed to iterative ReliefF (IRF) to automatically select the best feature vector. The quadratic support vector machine (QSVM) is utilized as a classifier in this work. We have developed our model using two public OCT image datasets, and they are named database 1 (DB1) and database 2 (DB2). The proposed framework can attain 97.40% and 100% classification accuracies using the two OCT datasets, DB1 and DB2, respectively. These results illustrate the success of our model.
Collapse
Affiliation(s)
- Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Wai Yee Chan
- University Malaya Research Imaging Centre, Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 59100, Malaysia;
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23002, Turkey; (S.D.); (T.T.)
| | - Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan 75000, Turkey;
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23002, Turkey; (S.D.); (T.T.)
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032-3784, USA;
| | - Nazrul Islam
- Glaucoma Faculty, Bangladesh Eye Hospital & Institute, Dhaka 1206, Bangladesh;
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zakia Sultana Shahid
- Department of Ophthalmology, Anwer Khan Modern Medical College, Dhaka 1205, Bangladesh;
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 129799, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|