1
|
Roca V, Kuchcinski G, Pruvo JP, Manouvriez D, Lopes R. IGUANe: A 3D generalizable CycleGAN for multicenter harmonization of brain MR images. Med Image Anal 2025; 99:103388. [PMID: 39546981 DOI: 10.1016/j.media.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
In MRI studies, the aggregation of imaging data from multiple acquisition sites enhances sample size but may introduce site-related variabilities that hinder consistency in subsequent analyses. Deep learning methods for image translation have emerged as a solution for harmonizing MR images across sites. In this study, we introduce IGUANe (Image Generation with Unified Adversarial Networks), an original 3D model that leverages the strengths of domain translation and straightforward application of style transfer methods for multicenter brain MR image harmonization. IGUANe extends CycleGAN by integrating an arbitrary number of domains for training through a many-to-one architecture. The framework based on domain pairs enables the implementation of sampling strategies that prevent confusion between site-related and biological variabilities. During inference, the model can be applied to any image, even from an unknown acquisition site, making it a universal generator for harmonization. Trained on a dataset comprising T1-weighted images from 11 different scanners, IGUANe was evaluated on data from unseen sites. The assessments included the transformation of MR images with traveling subjects, the preservation of pairwise distances between MR images within domains, the evolution of volumetric patterns related to age and Alzheimer's disease (AD), and the performance in age regression and patient classification tasks. Comparisons with other harmonization and normalization methods suggest that IGUANe better preserves individual information in MR images and is more suitable for maintaining and reinforcing variabilities related to age and AD. Future studies may further assess IGUANe in other multicenter contexts, either using the same model or retraining it for applications to different image modalities. Codes and the trained IGUANe model are available at https://github.com/RocaVincent/iguane_harmonization.git.
Collapse
Affiliation(s)
- Vincent Roca
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.
| | - Grégory Kuchcinski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Neuroradiologie, F-59000 Lille, France
| | - Jean-Pierre Pruvo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Neuroradiologie, F-59000 Lille, France
| | - Dorian Manouvriez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Renaud Lopes
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Médecine Nucléaire, F-59000 Lille, France
| |
Collapse
|
2
|
Dollé G, Loron G, Alloux M, Kraus V, Delannoy Q, Beck J, Bednarek N, Rousseau F, Passat N. Multilabel SegSRGAN-A framework for parcellation and morphometry of preterm brain in MRI. PLoS One 2024; 19:e0312822. [PMID: 39485735 PMCID: PMC11530046 DOI: 10.1371/journal.pone.0312822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for observing and assessing the properties of brain tissue and structures. In particular, in the context of neonatal care, MR images can be used to analyze neurodevelopmental problems that may arise in premature newborns. However, the intrinsic properties of newborn MR images, combined with the high variability of MR acquisition in a clinical setting, result in complex and heterogeneous images. Segmentation methods dedicated to the processing of clinical data are essential for obtaining relevant biomarkers. In this context, the design of quality control protocols for the associated segmentation is a cornerstone for guaranteeing the accuracy and usefulness of these inferred biomarkers. In recent work, we have proposed a new method, SegSRGAN, designed for super-resolution reconstruction and segmentation of specific brain structures. In this article, we first propose an extension of SegSRGAN from binary segmentation to multi-label segmentation, leading then to a partitioning of an MR image into several labels, each corresponding to a specific brain tissue/area. Secondly, we propose a segmentation quality control protocol designed to assess the performance of the proposed method with regard to this specific parcellation task in neonatal MR imaging. In particular, we combine scores derived from expert analysis, morphometric measurements and topological properties of the structures studied. This segmentation quality control can enable clinicians to select reliable segmentations for clinical analysis, starting with correlations between perinatal risk factors, regional volumes and specific dimensions of cognitive development. Based on this protocol, we are investigating the strengths and weaknesses of SegSRGAN and its potential suitability for clinical research in the context of morphometric analysis of brain structure in preterm infants, and to potentially design new biomarkers of neurodevelopment. The proposed study focuses on MR images from the EPIRMEX dataset, collected as part of a national cohort study. In particular, this work represents a first step towards the design of 3-dimensional neonatal brain morphometry based on segmentation. The (free and open-source) code of multilabel SegSRGAN is publicly available at the following URL: https://doi.org/10.5281/zenodo.12659424.
Collapse
Affiliation(s)
- Guillaume Dollé
- CNRS, LMR, UMR 9008, Université de Reims Champagne Ardenne, Reims, France
| | - Gauthier Loron
- CRESTIC, Université de Reims Champagne Ardenne, Reims, France
- Service de Médecine Néonatale et Réanimation Pédiatrique, CHU de Reims, Reims, France
| | - Margaux Alloux
- Service de Médecine Néonatale et Réanimation Pédiatrique, CHU de Reims, Reims, France
- Unité d’aide Méthodologique - Pôle Recherche, CHU de Reims, Reims, France
| | - Vivien Kraus
- CRESTIC, Université de Reims Champagne Ardenne, Reims, France
| | | | - Jonathan Beck
- Service de Médecine Néonatale et Réanimation Pédiatrique, CHU de Reims, Reims, France
| | - Nathalie Bednarek
- CRESTIC, Université de Reims Champagne Ardenne, Reims, France
- Service de Médecine Néonatale et Réanimation Pédiatrique, CHU de Reims, Reims, France
| | | | - Nicolas Passat
- CRESTIC, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
3
|
Chen J, Lu R, Ye S, Guang M, Tassew TM, Jing B, Zhang G, Chen G, Shen D. Image Recovery Matters: A Recovery-Extraction Framework for Robust Fetal Brain Extraction From MR Images. IEEE J Biomed Health Inform 2024; 28:823-834. [PMID: 37995170 DOI: 10.1109/jbhi.2023.3333953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The extraction of the fetal brain from magnetic resonance (MR) images is a challenging task. In particular, fetal MR images suffer from different kinds of artifacts introduced during the image acquisition. Among those artifacts, intensity inhomogeneity is a common one affecting brain extraction. In this work, we propose a deep learning-based recovery-extraction framework for fetal brain extraction, which is particularly effective in handling fetal MR images with intensity inhomogeneity. Our framework involves two stages. First, the artifact-corrupted images are recovered with the proposed generative adversarial learning-based image recovery network with a novel region-of-darkness discriminator that enforces the network focusing on artifacts of the images. Second, we propose a brain extraction network for more effective fetal brain segmentation by strengthening the association between lower- and higher-level features as well as suppressing task-irrelevant features. Thanks to the proposed recovery-extraction strategy, our framework is able to accurately segment fetal brains from artifact-corrupted MR images. The experiments show that our framework achieves promising performance in both quantitative and qualitative evaluations, and outperforms state-of-the-art methods in both image recovery and fetal brain extraction.
Collapse
|
4
|
Mhlanga ST, Viriri S. Deep learning techniques for isointense infant brain tissue segmentation: a systematic literature review. Front Med (Lausanne) 2023; 10:1240360. [PMID: 38193036 PMCID: PMC10773803 DOI: 10.3389/fmed.2023.1240360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction To improve comprehension of initial brain growth in wellness along with sickness, it is essential to precisely segment child brain magnetic resonance imaging (MRI) into white matter (WM) and gray matter (GM), along with cerebrospinal fluid (CSF). Nonetheless, in the isointense phase (6-8 months of age), the inborn myelination and development activities, WM along with GM display alike stages of intensity in both T1-weighted and T2-weighted MRI, making tissue segmentation extremely difficult. Methods The comprehensive review of studies related to isointense brain MRI segmentation approaches is highlighted in this publication. The main aim and contribution of this study is to aid researchers by providing a thorough review to make their search for isointense brain MRI segmentation easier. The systematic literature review is performed from four points of reference: (1) review of studies concerning isointense brain MRI segmentation; (2) research contribution and future works and limitations; (3) frequently applied evaluation metrics and datasets; (4) findings of this studies. Results and discussion The systemic review is performed on studies that were published in the period of 2012 to 2022. A total of 19 primary studies of isointense brain MRI segmentation were selected to report the research question stated in this review.
Collapse
Affiliation(s)
| | - Serestina Viriri
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Roca V, Kuchcinski G, Pruvo JP, Manouvriez D, Leclerc X, Lopes R. A three-dimensional deep learning model for inter-site harmonization of structural MR images of the brain: Extensive validation with a multicenter dataset. Heliyon 2023; 9:e22647. [PMID: 38107313 PMCID: PMC10724680 DOI: 10.1016/j.heliyon.2023.e22647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
In multicenter MRI studies, pooling the imaging data can introduce site-related variabilities and can therefore bias the subsequent analyses. To harmonize the intensity distributions of brain MR images in a multicenter dataset, unsupervised deep learning methods can be employed. Here, we developed a model based on cycle-consistent adversarial networks for the harmonization of T1-weighted brain MR images. In contrast to previous works, it was designed to process three-dimensional whole-brain images in a stable manner while optimizing computation resources. Using six different MRI datasets for healthy adults (n=1525 in total) with different acquisition parameters, we tested the model in (i) three pairwise harmonizations with site effects of various sizes, (ii) an overall harmonization of the six datasets with different age distributions, and (iii) a traveling-subject dataset. Our results for intensity distributions, brain volumes, image quality metrics and radiomic features indicated that the MRI characteristics at the various sites had been effectively homogenized. Next, brain age prediction experiments and the observed correlation between the gray-matter volume and age showed that thanks to an appropriate training strategy and despite biological differences between the dataset populations, the model reinforced biological patterns. Furthermore, radiologic analyses of the harmonized images attested to the conservation of the radiologic information in the original images. The robustness of the harmonization model (as judged with various datasets and metrics) demonstrates its potential for application in retrospective multicenter studies.
Collapse
Affiliation(s)
- Vincent Roca
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Grégory Kuchcinski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Jean-Pierre Pruvo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Dorian Manouvriez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Xavier Leclerc
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Renaud Lopes
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
| |
Collapse
|
6
|
Ng CKC. Generative Adversarial Network (Generative Artificial Intelligence) in Pediatric Radiology: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1372. [PMID: 37628371 PMCID: PMC10453402 DOI: 10.3390/children10081372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Generative artificial intelligence, especially with regard to the generative adversarial network (GAN), is an important research area in radiology as evidenced by a number of literature reviews on the role of GAN in radiology published in the last few years. However, no review article about GAN in pediatric radiology has been published yet. The purpose of this paper is to systematically review applications of GAN in pediatric radiology, their performances, and methods for their performance evaluation. Electronic databases were used for a literature search on 6 April 2023. Thirty-seven papers met the selection criteria and were included. This review reveals that the GAN can be applied to magnetic resonance imaging, X-ray, computed tomography, ultrasound and positron emission tomography for image translation, segmentation, reconstruction, quality assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the included studies compared their GAN model performances with those of other approaches and indicated that their GAN models outperformed the others by 0.1-158.6%. However, these study findings should be used with caution because of a number of methodological weaknesses. For future GAN studies, more robust methods will be essential for addressing these issues. Otherwise, this would affect the clinical adoption of the GAN-based applications in pediatric radiology and the potential advantages of GAN could not be realized widely.
Collapse
Affiliation(s)
- Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; or ; Tel.: +61-8-9266-7314; Fax: +61-8-9266-2377
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
7
|
Tian D, Zeng Z, Sun X, Tong Q, Li H, He H, Gao JH, He Y, Xia M. A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. Neuroimage 2022; 257:119297. [PMID: 35568346 DOI: 10.1016/j.neuroimage.2022.119297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of multisite large-sample MRI datasets collected during large brain research projects in the last decade has provided critical resources for understanding the neurobiological mechanisms underlying cognitive functions and brain disorders. However, the significant site effects observed in imaging data and their derived structural and functional features have prevented the derivation of consistent findings across multiple studies. The development of harmonization methods that can effectively eliminate complex site effects while maintaining biological characteristics in neuroimaging data has become a vital and urgent requirement for multisite imaging studies. Here, we propose a deep learning-based framework to harmonize imaging data obtained from pairs of sites, in which site factors and brain features can be disentangled and encoded. We trained the proposed framework with a publicly available traveling subject dataset from the Strategic Research Program for Brain Sciences (SRPBS) and harmonized the gray matter volume maps derived from eight source sites to a target site. The proposed framework significantly eliminated intersite differences in gray matter volumes. The embedded encoders successfully captured both the abstract textures of site factors and the concrete brain features. Moreover, the proposed framework exhibited outstanding performance relative to conventional statistical harmonization methods in terms of site effect removal, data distribution homogenization, and intrasubject similarity improvement. Finally, the proposed harmonization network provided fixable expandability, through which new sites could be linked to the target site via indirect schema without retraining the whole model. Together, the proposed method offers a powerful and interpretable deep learning-based harmonization framework for multisite neuroimaging data that can enhance reliability and reproducibility in multisite studies regarding brain development and brain disorders.
Collapse
Affiliation(s)
- Dezheng Tian
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, China
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Fan X, Shan S, Li X, Li J, Mi J, Yang J, Zhang Y. Attention-modulated multi-branch convolutional neural networks for neonatal brain tissue segmentation. Comput Biol Med 2022; 146:105522. [PMID: 35525069 DOI: 10.1016/j.compbiomed.2022.105522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
Abstract
Accurate measurement of brain structures is essential for the evaluation of neonatal brain growth and development. The conventional methods use manual segmentation to measure brain tissues, which is very time-consuming and inefficient. Recent deep learning achieves excellent performance in computer vision, but it is still unsatisfactory for segmenting magnetic resonance images of neonatal brains because they are immature with unique attributes. In this paper, we propose a novel attention-modulated multi-branch convolutional neural network for neonatal brain tissue segmentation. The proposed network is built on the encoder-decoder framework by introducing both multi-scale convolutions in the encoding path and multi-branch attention modules in the decoding path. Multi-scale convolutions with different kernels are used to extract rich semantic features across large receptive fields in the encoding path. Multi-branch attention modules are used to capture abundant contextual information in the decoding path for segmenting brain tissues by fusing both local features and their corresponding global dependencies. Spatial attention connections between the encoding and decoding paths are designed to increase feature propagation for both avoiding information loss during downsampling and accelerating model training convergence. The proposed network was implemented in comparison with baseline methods on three neonatal brain datasets. Our network achieves the average Dice similarity coefficients/the average Hausdorff distances of 0.9116/8.1289, 0.9367/9.8212 and 0.8931/8.1612 on the customized dCBP2021 dataset, 0.8786/11.7863, 0.8965/13.4296 and 0.8539/10.462 on the public NBAtlas dataset, as well as 0.9253/7.7968, 0.9448/9.5472 and 0.9132/7.5877 on the public dHCP2017 dataset in partitioning the brain into gray matter, white matter and cerebrospinal fluid, respectively. The experimental results show that the proposed method achieves competitive state-of-the-art performance in neonatal brain tissue segmentation. The code and pre-trained models are available at https://github.com/zhangyongqin/AMCNN.
Collapse
Affiliation(s)
- Xunli Fan
- School of Information Science and Technology, Northwest University, Xi'an, 710127, China.
| | - Shixi Shan
- School of Information Science and Technology, Northwest University, Xi'an, 710127, China.
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jinhang Li
- School of Information Science and Technology, Northwest University, Xi'an, 710127, China.
| | - Jizong Mi
- School of Information Science and Technology, Northwest University, Xi'an, 710127, China.
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yongqin Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, China; CAS Key Laboratory of Spectral Imaging Technology, Xi'an, 710119, China.
| |
Collapse
|