1
|
Rondina J, Nachev P. Artificial intelligence and stroke imaging. Curr Opin Neurol 2025; 38:40-46. [PMID: 39760722 PMCID: PMC11706347 DOI: 10.1097/wco.0000000000001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Though simple in its fundamental mechanism - a critical disruption of local blood supply - stroke is complicated by the intricate nature of the neural substrate, the neurovascular architecture, and their complex interactions in generating its clinical manifestations. This complexity is adequately described by high-resolution imaging with sensitivity not only to parenchymal macrostructure but also microstructure and functional tissue properties, in conjunction with detailed characterization of vascular topology and dynamics. Such descriptive richness mandates models of commensurate complexity only artificial intelligence could plausibly deliver, if we are to achieve the goal of individually precise, personalized care. RECENT FINDINGS Advances in machine vision technology, especially deep learning, are delivering higher fidelity predictive, descriptive, and inferential tools, incorporating increasingly rich imaging information within ever more flexible models. Impact at the clinical front line remains modest, however, owing to the challenges of delivering models robust to the noisy, incomplete, biased, and comparatively small-scale data characteristic of real-world practice. SUMMARY The potential benefit of introducing AI to stroke, in imaging and elsewhere, is now unquestionable, but the optimal approach - and the path to real-world application - remain unsettled. Deep generative models offer a compelling solution to current obstacles and are predicted powerfully to catalyse innovation in the field.
Collapse
Affiliation(s)
- Jane Rondina
- High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, Russell Square House, Bloomsbury, London, UK
| | | |
Collapse
|
2
|
Akpinar MH, Sengur A, Salvi M, Seoni S, Faust O, Mir H, Molinari F, Acharya UR. Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:183-192. [PMID: 39698120 PMCID: PMC11655107 DOI: 10.1109/ojemb.2024.3508472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Generative Adversarial Networks (GANs) have emerged as a powerful tool in artificial intelligence, particularly for unsupervised learning. This systematic review analyzes GAN applications in healthcare, focusing on image and signal-based studies across various clinical domains. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we reviewed 72 relevant journal articles. Our findings reveal that magnetic resonance imaging (MRI) and electrocardiogram (ECG) signal acquisition techniques were most utilized, with brain studies (22%), cardiology (18%), cancer (15%), ophthalmology (12%), and lung studies (10%) being the most researched areas. We discuss key GAN architectures, including cGAN (31%) and CycleGAN (18%), along with datasets, evaluation metrics, and performance outcomes. The review highlights promising data augmentation, anonymization, and multi-task learning results. We identify current limitations, such as the lack of standardized metrics and direct comparisons, and propose future directions, including the development of no-reference metrics, immersive simulation scenarios, and enhanced interpretability.
Collapse
Affiliation(s)
- Muhammed Halil Akpinar
- Vocational School of Technical SciencesIstanbul University-Cerrahpasa34320IstanbulTürkiye
| | | | - Massimo Salvi
- Department of Electronics and TelecommunicationsPolitecnico di Torino10129TurinItaly
| | - Silvia Seoni
- Department of Electronics and TelecommunicationsPolitecnico di Torino10129TurinItaly
| | - Oliver Faust
- Anglia Ruskin University Cambridge CampusCB1 1PTCambridgeU.K.
| | - Hasan Mir
- American University of SharjahSharjah26666UAE
| | - Filippo Molinari
- Department of Electronics and TelecommunicationsPolitecnico di Torino10129TurinItaly
| | | |
Collapse
|
3
|
Luo J, Dai P, He Z, Huang Z, Liao S, Liu K. Deep learning models for ischemic stroke lesion segmentation in medical images: A survey. Comput Biol Med 2024; 175:108509. [PMID: 38677171 DOI: 10.1016/j.compbiomed.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
This paper provides a comprehensive review of deep learning models for ischemic stroke lesion segmentation in medical images. Ischemic stroke is a severe neurological disease and a leading cause of death and disability worldwide. Accurate segmentation of stroke lesions in medical images such as MRI and CT scans is crucial for diagnosis, treatment planning and prognosis. This paper first introduces common imaging modalities used for stroke diagnosis, discussing their capabilities in imaging lesions at different disease stages from the acute to chronic stage. It then reviews three major public benchmark datasets for evaluating stroke segmentation algorithms: ATLAS, ISLES and AISD, highlighting their key characteristics. The paper proceeds to provide an overview of foundational deep learning architectures for medical image segmentation, including CNN-based and transformer-based models. It summarizes recent innovations in adapting these architectures to the task of stroke lesion segmentation across the three datasets, analyzing their motivations, modifications and results. A survey of loss functions and data augmentations employed for this task is also included. The paper discusses various aspects related to stroke segmentation tasks, including prior knowledge, small lesions, and multimodal fusion, and then concludes by outlining promising future research directions. Overall, this comprehensive review covers critical technical developments in the field to support continued progress in automated stroke lesion segmentation.
Collapse
Affiliation(s)
- Jialin Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Zhuang He
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shenghui Liao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Kun Liu
- Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| |
Collapse
|
4
|
Zhao X, Zang D, Wang S, Shen Z, Xuan K, Wei Z, Wang Z, Zheng R, Wu X, Li Z, Wang Q, Qi Z, Zhang L. sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation. Comput Med Imaging Graph 2024; 112:102325. [PMID: 38228021 DOI: 10.1016/j.compmedimag.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples. However, conventional data augmentation strategies such as spatial and intensity transformation are unable to synthesize the deformation and lesions in traumatic brains, which limits the performance of the subsequent segmentation task. To address these issues, we propose a novel medical image inpainting model named sTBI-GAN to synthesize labeled sTBI MR scans by adversarial inpainting. The main strength of our sTBI-GAN method is that it can generate sTBI images and corresponding labels simultaneously, which has not been achieved in previous inpainting methods for medical images. We first generate the inpainted image under the guidance of edge information following a coarse-to-fine manner, and then the synthesized MR image is used as the prior for label inpainting. Furthermore, we introduce a registration-based template augmentation pipeline to increase the diversity of the synthesized image pairs and enhance the capacity of data augmentation. Experimental results show that the proposed sTBI-GAN method can synthesize high-quality labeled sTBI images, which greatly improves the 2D and 3D traumatic brain segmentation performance compared with the alternatives. Code is available at .
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Sheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenrong Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyu Wei
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Zheren Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering (Basel) 2023; 10:1435. [PMID: 38136026 PMCID: PMC10740686 DOI: 10.3390/bioengineering10121435] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The integration of artificial intelligence (AI) into medical imaging has guided in an era of transformation in healthcare. This literature review explores the latest innovations and applications of AI in the field, highlighting its profound impact on medical diagnosis and patient care. The innovation segment explores cutting-edge developments in AI, such as deep learning algorithms, convolutional neural networks, and generative adversarial networks, which have significantly improved the accuracy and efficiency of medical image analysis. These innovations have enabled rapid and accurate detection of abnormalities, from identifying tumors during radiological examinations to detecting early signs of eye disease in retinal images. The article also highlights various applications of AI in medical imaging, including radiology, pathology, cardiology, and more. AI-based diagnostic tools not only speed up the interpretation of complex images but also improve early detection of disease, ultimately delivering better outcomes for patients. Additionally, AI-based image processing facilitates personalized treatment plans, thereby optimizing healthcare delivery. This literature review highlights the paradigm shift that AI has brought to medical imaging, highlighting its role in revolutionizing diagnosis and patient care. By combining cutting-edge AI techniques and their practical applications, it is clear that AI will continue shaping the future of healthcare in profound and positive ways.
Collapse
Affiliation(s)
- Luís Pinto-Coelho
- ISEP—School of Engineering, Polytechnic Institute of Porto, 4200-465 Porto, Portugal;
- INESCTEC, Campus of the Engineering Faculty of the University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Huang LC, Tsai HH. Perceptual Contrastive Generative Adversarial Network based on image warping for unsupervised image-to-image translation. Neural Netw 2023; 166:313-325. [PMID: 37541163 DOI: 10.1016/j.neunet.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 08/06/2023]
Abstract
This paper proposes an unsupervised image-to-image (UI2I) translation model, called Perceptual Contrastive Generative Adversarial Network (PCGAN), which can mitigate the distortion problem to enhance performance of the traditional UI2I methods. The PCGAN is designed with a two-stage UI2I model. In the first stage of the PCGAN, it leverages a novel image warping to transform shapes of objects in input (source) images. In the second stage of the PCGAN, the residual prediction is devised in refinements of the outputs of the first stage of the PCGAN. To promote performance of the image warping, a loss function, called Perceptual Patch-Wise InfoNCE, is developed in the PCGAN to effectively memorize the visual correspondences between warped images and refined images. Experimental results on quantitative evaluation and visualization comparison for UI2I benchmarks show that the PCGAN is superior to other existing methods considered here.
Collapse
Affiliation(s)
- Lin-Chieh Huang
- Institute of Data Science & Information Computing, National Chung Hsing University, 402, Taichung, Taiwan
| | - Hung-Hsu Tsai
- Institute of Data Science & Information Computing, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
7
|
Chan K, Maralani PJ, Moody AR, Khademi A. Synthesis of diffusion-weighted MRI scalar maps from FLAIR volumes using generative adversarial networks. Front Neuroinform 2023; 17:1197330. [PMID: 37603783 PMCID: PMC10436214 DOI: 10.3389/fninf.2023.1197330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
Introduction Acquisition and pre-processing pipelines for diffusion-weighted imaging (DWI) volumes are resource- and time-consuming. Generating synthetic DWI scalar maps from commonly acquired brain MRI sequences such as fluid-attenuated inversion recovery (FLAIR) could be useful for supplementing datasets. In this work we design and compare GAN-based image translation models for generating DWI scalar maps from FLAIR MRI for the first time. Methods We evaluate a pix2pix model, two modified CycleGANs using paired and unpaired data, and a convolutional autoencoder in synthesizing DWI fractional anisotropy (FA) and mean diffusivity (MD) from whole FLAIR volumes. In total, 420 FLAIR and DWI volumes (11,957 images) from multi-center dementia and vascular disease cohorts were used for training/testing. Generated images were evaluated using two groups of metrics: (1) human perception metrics including peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), (2) structural metrics including a newly proposed histogram similarity (Hist-KL) metric and mean squared error (MSE). Results Pix2pix demonstrated the best performance both quantitatively and qualitatively with mean PSNR, SSIM, and MSE metrics of 23.41 dB, 0.8, 0.004, respectively for MD generation, and 24.05 dB, 0.78, 0.004, respectively for FA generation. The new histogram similarity metric demonstrated sensitivity to differences in fine details between generated and real images with mean pix2pix MD and FA Hist-KL metrics of 11.73 and 3.74, respectively. Detailed analysis of clinically relevant regions of white matter (WM) and gray matter (GM) in the pix2pix images also showed strong significant (p < 0.001) correlations between real and synthetic FA values in both tissue types (R = 0.714 for GM, R = 0.877 for WM). Discussion/conclusion Our results show that pix2pix's FA and MD models had significantly better structural similarity of tissue structures and fine details than other models, including WM tracts and CSF spaces, between real and generated images. Regional analysis of synthetic volumes showed that synthetic DWI images can not only be used to supplement clinical datasets, but demonstrates potential utility in bypassing or correcting registration in data pre-processing.
Collapse
Affiliation(s)
- Karissa Chan
- Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alan R. Moody
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - April Khademi
- Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
- Keenan Research Center, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Garcea F, Serra A, Lamberti F, Morra L. Data augmentation for medical imaging: A systematic literature review. Comput Biol Med 2023; 152:106391. [PMID: 36549032 DOI: 10.1016/j.compbiomed.2022.106391] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Recent advances in Deep Learning have largely benefited from larger and more diverse training sets. However, collecting large datasets for medical imaging is still a challenge due to privacy concerns and labeling costs. Data augmentation makes it possible to greatly expand the amount and variety of data available for training without actually collecting new samples. Data augmentation techniques range from simple yet surprisingly effective transformations such as cropping, padding, and flipping, to complex generative models. Depending on the nature of the input and the visual task, different data augmentation strategies are likely to perform differently. For this reason, it is conceivable that medical imaging requires specific augmentation strategies that generate plausible data samples and enable effective regularization of deep neural networks. Data augmentation can also be used to augment specific classes that are underrepresented in the training set, e.g., to generate artificial lesions. The goal of this systematic literature review is to investigate which data augmentation strategies are used in the medical domain and how they affect the performance of clinical tasks such as classification, segmentation, and lesion detection. To this end, a comprehensive analysis of more than 300 articles published in recent years (2018-2022) was conducted. The results highlight the effectiveness of data augmentation across organs, modalities, tasks, and dataset sizes, and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Fabio Garcea
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Alessio Serra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Fabrizio Lamberti
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Lia Morra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy.
| |
Collapse
|
9
|
A Systematic Literature Review on Applications of GAN-Synthesized Images for Brain MRI. FUTURE INTERNET 2022. [DOI: 10.3390/fi14120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
With the advances in brain imaging, magnetic resonance imaging (MRI) is evolving as a popular radiological tool in clinical diagnosis. Deep learning (DL) methods can detect abnormalities in brain images without an extensive manual feature extraction process. Generative adversarial network (GAN)-synthesized images have many applications in this field besides augmentation, such as image translation, registration, super-resolution, denoising, motion correction, segmentation, reconstruction, and contrast enhancement. The existing literature was reviewed systematically to understand the role of GAN-synthesized dummy images in brain disease diagnosis. Web of Science and Scopus databases were extensively searched to find relevant studies from the last 6 years to write this systematic literature review (SLR). Predefined inclusion and exclusion criteria helped in filtering the search results. Data extraction is based on related research questions (RQ). This SLR identifies various loss functions used in the above applications and software to process brain MRIs. A comparative study of existing evaluation metrics for GAN-synthesized images helps choose the proper metric for an application. GAN-synthesized images will have a crucial role in the clinical sector in the coming years, and this paper gives a baseline for other researchers in the field.
Collapse
|
10
|
Yan S, Wang C, Chen W, Lyu J. Swin transformer-based GAN for multi-modal medical image translation. Front Oncol 2022; 12:942511. [PMID: 36003791 PMCID: PMC9395186 DOI: 10.3389/fonc.2022.942511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Medical image-to-image translation is considered a new direction with many potential applications in the medical field. The medical image-to-image translation is dominated by two models, including supervised Pix2Pix and unsupervised cyclic-consistency generative adversarial network (GAN). However, existing methods still have two shortcomings: 1) the Pix2Pix requires paired and pixel-aligned images, which are difficult to acquire. Nevertheless, the optimum output of the cycle-consistency model may not be unique. 2) They are still deficient in capturing the global features and modeling long-distance interactions, which are critical for regions with complex anatomical structures. We propose a Swin Transformer-based GAN for Multi-Modal Medical Image Translation, named MMTrans. Specifically, MMTrans consists of a generator, a registration network, and a discriminator. The Swin Transformer-based generator enables to generate images with the same content as source modality images and similar style information of target modality images. The encoder part of the registration network, based on Swin Transformer, is utilized to predict deformable vector fields. The convolution-based discriminator determines whether the target modality images are similar to the generator or from the real images. Extensive experiments conducted using the public dataset and clinical datasets showed that our network outperformed other advanced medical image translation methods in both aligned and unpaired datasets and has great potential to be applied in clinical applications.
Collapse
Affiliation(s)
- Shouang Yan
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Jun Lyu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| |
Collapse
|