1
|
Cui J, Zhang X, Li X, Luo X, Chen X, Yin Z. Preterm birth prediction from electrohysterogram using multivariate empirical mode decomposition. Med Biol Eng Comput 2025; 63:1867-1880. [PMID: 39893327 DOI: 10.1007/s11517-025-03293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
Electrohysterogram (EHG) is an electrophysiological signal describing uterine contractions that can be non-invasively measured on maternal abdominal surface. This signal contains vital physiological and pathological information for assessing delivery abnormalities, such as preterm birth. However, extracting information that effectively characterizes the association with abnormal delivery from the weak EHG signal is challenging. We present a preterm birth predicting method using multivariate empirical mode decomposition (MEMD) algorithm that adaptively decomposes multichannel EHG signals into different intrinsic mode functions (IMFs). MEMD maintains spectral consistency across channels and avoids mode-mixing problems across IMFs due to its powerful fine-grained signal structure decoupling capability. On this basis, a total of 180 features were extracted from the IMFs and the final eight features were chosen using a two-step feature selection algorithm. A support vector machine (SVM) classifier was employed for decision-making. Specifically, cost-sensitive algorithm was used to solve the data imbalance problem. The proposed method was evaluated using 300 EHG recordings in TPEHG database. The results show that our method outperforms other state-of-the-art methods in terms of sensitivity (85.16%), specificity (96.54%),F 1 score (91.04%), accuracy (94.36%), and AUC (97.31%). This study provides a powerful tool with wide applications for preterm birth risk diagnosis in clinical obstetric.
Collapse
Affiliation(s)
- Jiawen Cui
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xu Zhang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xinhui Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuanyu Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiang Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| |
Collapse
|
2
|
Pirnar Ž, Jager F, Geršak K. Peak amplitude of the normalized power spectrum of the electromyogram of the uterus in the low frequency band is an effective predictor of premature birth. PLoS One 2024; 19:e0308797. [PMID: 39264880 PMCID: PMC11392270 DOI: 10.1371/journal.pone.0308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The current trends in the development of methods for non-invasive prediction of premature birth based on the electromyogram of the uterus, i.e., electrohysterogram (EHG), suggest an ever-increasing use of large number of features, complex models, and deep learning approaches. These "black-box" approaches rarely provide insights into the underlying physiological mechanisms and are not easily explainable, which may prevent their use in clinical practice. Alternatively, simple methods using meaningful features, preferably using a single feature (biomarker), are highly desirable for assessing the danger of premature birth. To identify suitable biomarker candidates, we performed feature selection using the stabilized sequential-forward feature-selection method employing learning and validation sets, and using multiple standard classifiers and multiple sets of the most widely used features derived from EHG signals. The most promising single feature to classify between premature EHG records and EHG records of all other term delivery modes evaluated on the test sets appears to be Peak Amplitude of the normalized power spectrum (PA) of the EHG signal in the low frequency band (0.125-0.575 Hz) which closely matches the known Fast Wave Low (FWL) frequency band. For classification of EHG records of the publicly available TPEHG DB, TPEHGT DS, and ICEHG DS databases, using the Partition-Synthesis evaluation technique, the proposed single feature, PA, achieved Classification Accuracy (CA) of 76.5% (AUC of 0.81). In combination with the second most promising feature, Median Frequency (MF) of the power spectrum in the frequency band above 1.0 Hz, which relates to the maternal resting heart rate, CA increased to 78.0% (AUC of 0.86). The developed method in this study for the prediction of premature birth outperforms single-feature and many multi-feature methods based on the EHG, and existing non-invasive chemical and molecular biomarkers. The developed method is fully automatic, simple, and the two proposed features are explainable.
Collapse
Affiliation(s)
- Žiga Pirnar
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Franc Jager
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Ksenija Geršak
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Shen J, Liu Y, Zhang M, Pumir A, Mu L, Li B, Xu J. Multi-channel electrohysterography enabled uterine contraction characterization and its effect in delivery assessment. Comput Biol Med 2023; 167:107697. [PMID: 37976821 DOI: 10.1016/j.compbiomed.2023.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Uterine contractions are routinely monitored by tocodynamometer (TOCO) at late stage of pregnancy to predict the onset of labor. However, TOCO reveals no information on the synchrony and coherence of contractions, which are important contributors to a successful delivery. The electrohysterography (EHG) is a recording of the electrical activities that trigger the local muscles to contract. The spatial-temporal information embedded in multiple channel EHG signals make them ideal for characterizing the synchrony and coherence of uterine contraction. To proceed, contractile time-windows are identified from TOCO signals and are then used to segment out the simultaneously recorded EHG signals of different channels. We construct sample entropy SamEn and Concordance Correlation based feature ψ from these EHG segments to quantify the synchrony and coherence of contraction. To test the effectiveness of the proposed method, 122 EHG recordings in the Icelandic EHG database were divided into two groups according to the time difference between the gestational ages at recording and at delivery (TTD). Both SamEn and ψ show clear difference in the two groups (p<10-5) even when measurements were made 120 h before delivery. Receiver operating characteristic curve analysis of these two features gave AUC values of 0.834 and 0.726 for discriminating imminent labor defined with TTD ≤ 24 h. The SamEn was significantly smaller in women (0.1433) of imminent labor group than in women (0.3774) of the pregnancy group. Using an optimal cutoff value of SamEn to identify imminent labor gives sensitivity, specificity, and accuracy as high as 0.909, 0.712 and 0.743, respectively. These results demonstrate superiority in comparing to the existing SOTA methods. This study is the first research work focusing on characterizing the synchrony property of contractions from the electrohysterography signals. Despite the very limited dataset used in the validation process, the promising results open a new direction to the use of electrohysterography in obstetrics.
Collapse
Affiliation(s)
- Junhua Shen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yan Liu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China
| | - Meiyu Zhang
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China
| | - Alain Pumir
- Laboratoire de Physique, Ecole Normal Superieure de Lyon, Lyon, France
| | - Liangshan Mu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baohua Li
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Jinshan Xu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Jager F. An open dataset with electrohysterogram records of pregnancies ending in induced and cesarean section delivery. Sci Data 2023; 10:669. [PMID: 37783671 PMCID: PMC10545725 DOI: 10.1038/s41597-023-02581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The existing non-invasive automated preterm birth prediction methods rely on the use of uterine electrohysterogram (EHG) records coming from spontaneous preterm and term deliveries, and are indifferent to term induced and cesarean section deliveries. In order to enhance current publicly available pool of term EHG records, we developed a new EHG dataset, Induced Cesarean EHG DataSet (ICEHG DS), containing 126 30-minute EHG records, recorded early (23rd week), and/or later (31st week) during pregnancy, of those pregnancies that were expected to end in spontaneous term delivery, but ended in induced or cesarean section delivery. The records were collected at the University Medical Center Ljubljana, Ljubljana, Slovenia. The dataset includes 38 and 43, early and later, induced; 11 and 8, early and later, cesarean; and 13 and 13, early and later, induced and cesarean EHG records. This dataset enables better understanding of the underlying physiological mechanisms involved during pregnancies ending in induced and cesarean deliveries, and provides a robust and more realistic assessment of the performance of automated preterm birth prediction methods.
Collapse
Affiliation(s)
- Franc Jager
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Shimoga Narayana Rao K, Asha V. An automatic classification approach for preterm delivery detection based on deep learning. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Mohammadi Far S, Beiramvand M, Shahbakhti M, Augustyniak P. Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks. SENSORS (BASEL, SWITZERLAND) 2023; 23:5965. [PMID: 37447815 DOI: 10.3390/s23135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Timely preterm labor prediction plays an important role for increasing the chance of neonate survival, the mother's mental health, and reducing financial burdens imposed on the family. The objective of this study is to propose a method for the reliable prediction of preterm labor from the electrohysterogram (EHG) signals based on different pregnancy weeks. In this paper, EHG signals recorded from 300 subjects were split into 2 groups: (I) those with preterm and term labor EHG data that were recorded prior to the 26th week of pregnancy (referred to as the PE-TE group), and (II) those with preterm and term labor EHG data that were recorded after the 26th week of pregnancy (referred to as the PL-TL group). After decomposing each EHG signal into four intrinsic mode functions (IMFs) by empirical mode decomposition (EMD), several linear and nonlinear features were extracted. Then, a self-adaptive synthetic over-sampling method was used to balance the feature vector for each group. Finally, a feature selection method was performed and the prominent ones were fed to different classifiers for discriminating between term and preterm labor. For both groups, the AdaBoost classifier achieved the best results with a mean accuracy, sensitivity, specificity, and area under the curve (AUC) of 95%, 92%, 97%, and 0.99 for the PE-TE group and a mean accuracy, sensitivity, specificity, and AUC of 93%, 90%, 94%, and 0.98 for the PL-TL group. The similarity between the obtained results indicates the feasibility of the proposed method for the prediction of preterm labor based on different pregnancy weeks.
Collapse
Affiliation(s)
| | - Matin Beiramvand
- Faculty of Information Technology and Communication, Tampere University, 33100 Tampere, Finland
| | - Mohammad Shahbakhti
- Biomedical Engineering Institute, Kaunas University of Technology, 51423 Kaunas, Lithuania
| | | |
Collapse
|
7
|
Breast cancer classification by a new approach to assessing deep neural network-based uncertainty quantification methods. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Goldsztejn U, Nehorai A. Predicting preterm births from electrohysterogram recordings via deep learning. PLoS One 2023; 18:e0285219. [PMID: 37167222 PMCID: PMC10174487 DOI: 10.1371/journal.pone.0285219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
About one in ten babies is born preterm, i.e., before completing 37 weeks of gestation, which can result in permanent neurologic deficit and is a leading cause of child mortality. Although imminent preterm labor can be detected, predicting preterm births more than one week in advance remains elusive. Here, we develop a deep learning method to predict preterm births directly from electrohysterogram (EHG) measurements of pregnant mothers recorded at around 31 weeks of gestation. We developed a prediction model, which includes a recurrent neural network, to predict preterm births using short-time Fourier transforms of EHG recordings and clinical information from two public datasets. We predicted preterm births with an area under the receiver-operating characteristic curve (AUC) of 0.78 (95% confidence interval: 0.76-0.80). Moreover, we found that the spectral patterns of the measurements were more predictive than the temporal patterns, suggesting that preterm births can be predicted from short EHG recordings in an automated process. We show that preterm births can be predicted for pregnant mothers around their 31st week of gestation, prompting beneficial treatments to reduce the incidence of preterm births and improve their outcomes.
Collapse
Affiliation(s)
- Uri Goldsztejn
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Arye Nehorai
- Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
9
|
Diaz-Martinez A, Monfort-Ortiz R, Ye-Lin Y, Garcia-Casado J, Nieto-Tous M, Nieto-Del-Amor F, Diago-Almela V, Prats-Boluda G. Uterine myoelectrical activity as biomarker of successful induction with Dinoprostone: Influence of parity. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|