1
|
Chen T, Xia X, Zhou J, Fang C, Le J, Wu N. The edge artifact extraction method for Si 3N 4 ceramic bearing rolling element microcracks characterization. Sci Rep 2024; 14:25872. [PMID: 39468144 PMCID: PMC11519507 DOI: 10.1038/s41598-024-75358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Aiming at the problem that the edge artifacts of Si3N4 ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to achieve the extraction of microcrack edge artifact features. Wavelet decomposition is used to remove noise, while wavelet reconstruction features are used to restore lost details. Creation of 2D discrete wavelet transform functional equations combining wavelet reconstruction and wavelet decomposition to improve contrast and eliminate noise in images featuring edge artifacts. For the problem of feature edge artifacts that are difficult to remove, the threshold segmentation function equation is designed to maximize the interclass variance, and the optimal threshold value is selected to remove the edge artifacts. The experimental results show that the average PSNR of the Si3N4 ceramic bearing rolling body point, line, and surface microcrack edge artifact feature images enhanced by the method in this paper is close to 62.69 dB, and the average SSIM is about 0.77. The method in this paper improves the contrast of microcrack edge artifact features of Si3N4 ceramic bearing rolling bodies and makes the feature extraction effect of point, line, and surface microcrack edge artifacts more complete.
Collapse
Affiliation(s)
- Tao Chen
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
- Laboratory of Ceramic Material Processing Technology Engineering, Jiangxi Province, Jingdezhen, 333403, Jiangxi, China
| | - Xin Xia
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
| | - Jianbin Zhou
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
| | - Changfu Fang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
- Laboratory of Ceramic Material Processing Technology Engineering, Jiangxi Province, Jingdezhen, 333403, Jiangxi, China
| | - Jianbo Le
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
- Laboratory of Ceramic Material Processing Technology Engineering, Jiangxi Province, Jingdezhen, 333403, Jiangxi, China
- National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen, 333403, Jiangxi, China
| | - Nanxing Wu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China.
- Laboratory of Ceramic Material Processing Technology Engineering, Jiangxi Province, Jingdezhen, 333403, Jiangxi, China.
| |
Collapse
|
2
|
Cui L, Si Z, Zhao K, Wang S. Denoising method for colonic pressure signals based on improved wavelet threshold. Biomed Phys Eng Express 2024; 10:065047. [PMID: 39353466 DOI: 10.1088/2057-1976/ad81fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The colonic peristaltic pressure signal is helpful for the diagnosis of intestinal diseases, but it is difficult to reflect the real situation of colonic peristalsis due to the interference of various factors. To solve this problem, an improved wavelet threshold denoising method based on discrete wavelet transform is proposed in this paper. This algorithm can effectively extract colonic peristaltic pressure signals and filter out noise. Firstly, a threshold function with three shape adjustment factors is constructed to give the function continuity and better flexibility. Then, a threshold calculation method based on different decomposition levels is designed. By adjusting the three preset shape factors, an appropriate threshold function is determined, and denoising of colonic pressure signals is achieved through hierarchical thresholding. In addition, the experimental analysis of bumps signal verifies that the proposed denoising method has good reliability and stability when dealing with non-stationary signals. Finally, the denoising performance of the proposed method was validated using colonic pressure signals. The experimental results indicate that, compared to other methods, this approach performs better in denoising and extracting colonic peristaltic pressure signals, aiding in further identification and treatment of colonic peristalsis disorders.
Collapse
Affiliation(s)
- Liu Cui
- Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Zhisen Si
- Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Kai Zhao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shuangkui Wang
- Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|
3
|
Sadia RT, Chen J, Zhang J. CT image denoising methods for image quality improvement and radiation dose reduction. J Appl Clin Med Phys 2024; 25:e14270. [PMID: 38240466 PMCID: PMC10860577 DOI: 10.1002/acm2.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024] Open
Abstract
With the ever-increasing use of computed tomography (CT), concerns about its radiation dose have become a significant public issue. To address the need for radiation dose reduction, CT denoising methods have been widely investigated and applied in low-dose CT images. Numerous noise reduction algorithms have emerged, such as iterative reconstruction and most recently, deep learning (DL)-based approaches. Given the rapid advancements in Artificial Intelligence techniques, we recognize the need for a comprehensive review that emphasizes the most recently developed methods. Hence, we have performed a thorough analysis of existing literature to provide such a review. Beyond directly comparing the performance, we focus on pivotal aspects, including model training, validation, testing, generalizability, vulnerability, and evaluation methods. This review is expected to raise awareness of the various facets involved in CT image denoising and the specific challenges in developing DL-based models.
Collapse
Affiliation(s)
- Rabeya Tus Sadia
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jin Chen
- Department of Medicine‐NephrologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
4
|
Chen X, Liu X, Wu Y, Wang Z, Wang SH. Research related to the diagnosis of prostate cancer based on machine learning medical images: A review. Int J Med Inform 2024; 181:105279. [PMID: 37977054 DOI: 10.1016/j.ijmedinf.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Prostate cancer is currently the second most prevalent cancer among men. Accurate diagnosis of prostate cancer can provide effective treatment for patients and greatly reduce mortality. The current medical imaging tools for screening prostate cancer are mainly MRI, CT and ultrasound. In the past 20 years, these medical imaging methods have made great progress with machine learning, especially the rise of deep learning has led to a wider application of artificial intelligence in the use of image-assisted diagnosis of prostate cancer. METHOD This review collected medical image processing methods, prostate and prostate cancer on MR images, CT images, and ultrasound images through search engines such as web of science, PubMed, and Google Scholar, including image pre-processing methods, segmentation of prostate gland on medical images, registration between prostate gland on different modal images, detection of prostate cancer lesions on the prostate. CONCLUSION Through these collated papers, it is found that the current research on the diagnosis and staging of prostate cancer using machine learning and deep learning is in its infancy, and most of the existing studies are on the diagnosis of prostate cancer and classification of lesions, and the accuracy is low, with the best results having an accuracy of less than 0.95. There are fewer studies on staging. The research is mainly focused on MR images and much less on CT images, ultrasound images. DISCUSSION Machine learning and deep learning combined with medical imaging have a broad application prospect for the diagnosis and staging of prostate cancer, but the research in this area still has more room for development.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiang Liu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yuke Wu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhenglei Wang
- Department of Medical Imaging, Shanghai Electric Power Hospital, Shanghai 201620, China.
| | - Shuo Hong Wang
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Wang G, Guo S, Han L, Zhao Z, Song X. COVID-19 ground-glass opacity segmentation based on fuzzy c-means clustering and improved random walk algorithm. Biomed Signal Process Control 2023; 79:104159. [PMID: 36119901 PMCID: PMC9464590 DOI: 10.1016/j.bspc.2022.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/10/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Abstract
Accurate segmentation of ground-glass opacity (GGO) is an important premise for doctors to judge COVID-19. Aiming at the problem of mis-segmentation for GGO segmentation methods, especially the problem of adhesive GGO connected with chest wall or blood vessel, this paper proposes an accurate segmentation of GGO based on fuzzy c-means (FCM) clustering and improved random walk algorithm. The innovation of this paper is to construct a Markov random field (MRF) with adaptive spatial information by using the spatial gravity Model and the spatial structural characteristics, which is introduced into the FCM model to automatically balance the insensitivity to noise and preserve the effectiveness of image edge details to improve the clustering accuracy of image. Then, the coordinate values of nodes and seed points in the image are combined with the spatial distance, and the geodesic distance is added to redefine the weight. According to the edge density of the image, the weight of the grayscale and the spatial feature in the weight function is adaptively calculated. In order to reduce the influence of edge noise on GGO segmentation, an adaptive snowfall model is proposed to preprocess the image, which can suppress the noise without losing the edge information. In this paper, CT images of different types of COVID-19 are selected for segmentation experiments, and the experimental results are compared with the traditional segmentation methods and several SOTA methods. The results suggest that the paper method can be used for the auxiliary diagnosis of COVID-19, so as to improve the work efficiency of doctors.
Collapse
Affiliation(s)
- Guowei Wang
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuli Guo
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China
| | - Lina Han
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhilei Zhao
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaowei Song
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Wang G, Guo S, Han L, Song X, Zhao Y. Research on multi-modal autonomous diagnosis algorithm of COVID-19 based on whale optimized support vector machine and improved D-S evidence fusion. Comput Biol Med 2022; 150:106181. [PMID: 36240596 PMCID: PMC9533636 DOI: 10.1016/j.compbiomed.2022.106181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Aiming at the problem that the single CT image signal feature recognition method in the self-diagnosis of diseases cannot accurately and reliably classify COVID-19, and it is easily confused with suspected cases. The collected CT signals and experimental indexes are extracted to construct different feature vectors. The support vector machine is optimized by the improved whale algorithm for the preliminary diagnosis of COVID-19, and the basic probability distribution function of each evidence is calculated by the posterior probability modeling method. Then the similarity measure is introduced to optimize the basic probability distribution function. Finally, the multi-domain feature fusion prediction model is established by using the weighted D-S evidence theory. The experimental results show that the fusion of multi-domain feature information by whale optimized support vector machine and improved D-S evidence theory can effectively improve the accuracy and the precision of COVID-19 autonomous diagnosis. The method of replacing a single feature parameter with multi-modal indicators (CT, routine laboratory indexes, serum cytokines and chemokines) provides a more reliable signal source for the diagnosis model, which can effectively distinguish COVID-19 from the suspected cases.
Collapse
Affiliation(s)
- Guowei Wang
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Shuli Guo
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China.
| | - Lina Han
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Xiaowei Song
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyuan Zhao
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|