1
|
Fundamentals of Biosensors and Detection Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:3-29. [PMID: 35760986 DOI: 10.1007/978-3-031-04039-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.
Collapse
|
2
|
Zhang B, Liu N, Liu QS, Zhang J, Zhou Q, Jiang G. Silver nanoparticles induce size-dependent and particle-specific neurotoxicity to primary cultures of rat cerebral cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110674. [PMID: 32387843 DOI: 10.1016/j.ecoenv.2020.110674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are widely applied in many fields because of their excellent antibacterial activities. Toxicological studies have showed that AgNPs can cross the blood-brain barrier and exhibit high retention in the brain. Therefore, the potential neurotoxicity of AgNPs is raising serious concerns. This study investigated the neurotoxicological effects of AgNPs with two different sizes (20 nm and 70 nm, AgNPs-20 and AgNPs-70) using primary cultures of rat cerebral cortical neurons in mature and developing stages. The contribution of silver ion release was investigated by testing the effects of ionic silver in parallel. The results showed that both AgNPs-20 and AgNPs-70 significantly decreased neuronal cell viability, and AgNPs-20 had stronger toxicity compared with AgNPs-70. AgNP applications caused the granulated skeleton structure of the mature neurons with some broken synapses after a 24-h exposure, and inhibited neuronal growth during a 7-day exposure. Intracellular silver accumulation at non-cytotoxic exposure levels inhibited dopamine efflux, which was particle-specific and free of released silver ions. The findings herein can aid in guiding the proper applications of AgNPs in different areas, especially in medical use.
Collapse
Affiliation(s)
- Bingjie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|