1
|
Jhuma TA, Dey SS, Sarkar R, Siddique S, Moniruzzaman M, Chowdhury A. Biofilm inhibition and antagonism of Klebsiella pneumoniae by probiotic lactic acid bacteria (LAB) isolated from raw cow milk. Microb Pathog 2025; 204:107603. [PMID: 40250494 DOI: 10.1016/j.micpath.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Lactic acid bacteria (LAB) with their potential health benefits are naturally prevalent in dairy and fermented food products. This probiotic microbiota can be an alternative biological tool for controlling other pathogenic bacteria. The study aimed to isolate lactic acid bacteria (LAB) from raw cow milk and evaluate their probiotic potential. Twelve gram-positive isolates showing tolerance to bile salt, acid, and low pH were identified by 16S rRNA sequencing, which revealed the isolates belong to the genera including Lactococcus, Enterococcus, Streptococcus, Bacillus, and Weissella. In case of probiotic potential, the isolates exhibited arrays of probiotic properties: autoaggregation (33.65-84.63 %), co-aggregation (8.17-83.22 %), cell surface hydrophobicity for both polar (13.37-90.24 %) and non-polar solvents (5.52-53.58 %) and able to form biofilm (75 % weak, 16.67 % moderate and 8.33 % strong). Statistical analysis revealed the correlation pattern between the probiotic properties and showed a significant strong positive correlation between cell surface hydrophobicity and aggregation. Additionally, three isolates L. lactis, W. confusa, and E. gallinarum that were sensitive to antibiotics, able to produce biofilm, and did not contain virulence genes were able to reduce the biofilm formation of pathogen K. pneumoniae (1.3-4 log) in the co-culture assay. These Findings suggest that LAB from the raw cow milk could serve as a natural biocontrol agent for preventing and controlling K. pneumoniae biofilm formation and pave the way for innovative intervention of LAB in food safety and clinical settings.
Collapse
Affiliation(s)
- Tania Akter Jhuma
- Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Subarna Sandhani Dey
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Rajib Sarkar
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Shahariar Siddique
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Abhijit Chowdhury
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh; Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh.
| |
Collapse
|
2
|
Zhai J, Nie L, Tian J, He Y, Gu Y. Stress resistance of the biofilm and planktonic forms of Lactobacillus delbrueckii in adverse environments. Lett Appl Microbiol 2025; 78:ovaf031. [PMID: 40053510 DOI: 10.1093/lambio/ovaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/09/2025]
Abstract
Biofilm and planktonic forms are different kinds of self-protection mechanisms in microorganisms for resistance to adverse environments. The research explored the physicochemical properties, antimicrobial, and antioxidant activities of Lactobacillus delbrueckii (L. delbrueckii) 5E, focusing on the biofilm's stress tolerance. L. delbrueckii 5E's high lactic acid production (709.1 g·L-1) enhances its antimicrobial activity, which is pH-dependent and decreases when the supernatant is adjusted to pH 6.5. The cell-free fermentation supernatant, bacterial suspension, and cell-free extract of L. delbrueckii 5E showed significant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion radicals. L. delbrueckii 5E formed biofilms with a bacterial count of 9.00 × 106 CFU·mL-1 on polyacrylonitrile electrospun membranes. Stress-tolerance tests indicated that the biofilm form of L. delbrueckii 5E exhibited superior survival under high temperatures, osmotic pressures, bile salts, potassium sorbate, and H2O2 exposure. The biofilm consistently released free bacteria, maintaining a stable total colony count of 106 CFU·mL-1. The remarkable antibacterial and antioxidant properties of L. delbrueckii 5E, along with its resilience to harsh environments, establish its potential for applications in the food industry.
Collapse
Affiliation(s)
- Jiangyang Zhai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010018, China
| | - Lili Nie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010018, China
| | - Yinfeng He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010018, China
| | - Yue Gu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010018, China
| |
Collapse
|
3
|
Sindhu S, Saini T, Rawat HK, Chahar M, Grover A, Ahmad S, Mohan H. Beyond conventional antibiotics approaches: Global perspectives on alternative therapeutics including herbal prevention, and proactive management strategies in bovine mastitis. Microb Pathog 2024; 196:106989. [PMID: 39357684 DOI: 10.1016/j.micpath.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Mastitis, an intramammary inflammation resulting from microbial infectious agents, continues to pose a significant challenge within the dairy sector, adversely affecting animal well-being and leading to substantial economic losses. These losses are attributed to decreased milk production, heightened culling rates, and the expenses related to diagnostics, veterinary care, medication, and labor. Moreover, additional costs emerge due to reduced forthcoming milk yields, compromised reproductive health, and increased susceptibility to various illnesses. Identifying the responsible agents is crucial for disease management and the implementation of antimicrobial treatments. Despite the prevalent use of antibiotic treatment, the pressing need for new therapeutic alternatives to combat bovine mastitis arises from limitations, including low cure rates, rising resistance, and the presence of antibiotic residues in milk. This review explores the potential application of herbal extracts and essential oils known for their antimicrobial properties as alternative options for managing pathogens in mastitis treatment. It examines various treatment methods and management strategies, particularly emphasizing the progress of herbal remedies and natural therapeutics in addressing mastitis, a significant concern in bovine populations and dairy herds.
Collapse
Affiliation(s)
- Sonal Sindhu
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Tarun Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Harsh Kumar Rawat
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ankita Grover
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard University, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India.
| |
Collapse
|
4
|
Emiliano JVDS, Fusieger A, Camargo AC, Rodrigues FFDC, Nero LA, Perrone ÍT, Carvalho AFD. Staphylococcus aureus in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol. Foodborne Pathog Dis 2024; 21:601-616. [PMID: 39021233 DOI: 10.1089/fpd.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
Collapse
Affiliation(s)
- Jean Victor Dos Santos Emiliano
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Anderson Carlos Camargo
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabíola Faria da Cruz Rodrigues
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
5
|
Algburi AR, Jassim SM, Popov IV, Weeks R, Chikindas ML. Lactobacillus acidophilus VB1 co-aggregates and inhibits biofilm formation of chronic otitis media-associated pathogens. Braz J Microbiol 2024; 55:2581-2592. [PMID: 38789905 PMCID: PMC11405553 DOI: 10.1007/s42770-024-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.
Collapse
Affiliation(s)
- Ammar R Algburi
- Department of Microbiology, Veterinary Medicine College, University of Diyala, Baqubah, Iraq
| | - Shireen M Jassim
- Alkhalis Section for Primary Care/Thoracic and Respiratory Diseases Unit, Alkhalis, Iraq
| | - Igor V Popov
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, Venlo, The Netherlands.
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Federal Territory Sirius, Sirius University of Science and Technology, Sochi, Russian Federation.
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Zanzan M, Ezzaky Y, Hamadi F, Achemchem F. Enterococcus mundtii A2 biofilm and its anti-adherence potential against pathogenic microorganisms on stainless steel 316L. Braz J Microbiol 2024; 55:1131-1138. [PMID: 38319530 PMCID: PMC11153378 DOI: 10.1007/s42770-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.
Collapse
Affiliation(s)
- Mariem Zanzan
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco.
| |
Collapse
|
7
|
Tathode MS, Bonomo MG, Zappavigna S, Mang SM, Bocchetti M, Camele I, Caraglia M, Salzano G. Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Front Microbiol 2024; 15:1268216. [PMID: 38638895 PMCID: PMC11024341 DOI: 10.3389/fmicb.2024.1268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many lactic acid bacteria (LAB) strains are currently gaining attention in the food industry and various biological applications because of their harmless and functional properties. Given the growing consumer demand for safe food, further research into potential probiotic bacteria is beneficial. Therefore, we aimed to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from traditional fermented sausages from the Basilicata region of Southern Italy. Methods In this study, we analyzed the whole genome of the P. pentosaceus DSPZPP1 strain and performed in silico characterization to evaluate its applicability for probiotics and use in the food industry. Results and Discussion The whole-genome assembly and functional annotations revealed many interesting characteristics of the DSPZPP1 strain. Sequencing raw reads were assembled into a draft genome of size 1,891,398 bp, with a G + C content of 37.3%. Functional annotation identified 1930 protein-encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S rRNAs. The analysis shows the presence of genes that encode water-soluble B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, penocin A, adding importance to the food industry for bio-enriched food. The DSPZPP1 genome does not show the presence of plasmids, and no genes associated with antimicrobial resistance and virulence were found. In addition, two intact bacteriophages were identified. Importantly, the lowest probability value in pathogenicity analysis indicates that this strain is non-pathogenic to humans. 16 s rRNA-based phylogenetic analysis and comparative analysis based on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl transferases (GT) as a main class of enzymes followed by glycoside hydrolases (GH). Our study shows several interesting characteristics of the isolated DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as a promising probiotic candidate and making it more appropriate for selection as a future additive in biopreservation.
Collapse
Affiliation(s)
- Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Bonomo
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Giovanni Salzano
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| |
Collapse
|
8
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
9
|
Zarour K, Zeid AF, Mohedano ML, Prieto A, Kihal M, López P. Leuconostoc mesenteroides and Liquorilactobacillus mali strains, isolated from Algerian food products, are producers of the postbiotic compounds dextran, oligosaccharides and mannitol. World J Microbiol Biotechnol 2024; 40:114. [PMID: 38418710 PMCID: PMC10901973 DOI: 10.1007/s11274-024-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 μg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.
Collapse
Affiliation(s)
- Kenza Zarour
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Ahmed Fouad Zeid
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Alicia Prieto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Mebrouk Kihal
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain.
| |
Collapse
|
10
|
Kang X, Yang X, He Y, Guo C, Li Y, Ji H, Qin Y, Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 2023; 23:100827. [PMID: 37859998 PMCID: PMC10582481 DOI: 10.1016/j.mtbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Biofilms are aggregates of organized microbial growth that function as barriers and create a stable internal environment for cell survival. The bacteria in the biofilms exhibit characteristics that are quite different from the planktonic bacteria, such as strong resistance to antibiotics and other bactericides, getting out of host immunity, and developing in harsh environments, which all contribute to the persistent and intractable treatment. Hence, there is an urgent need to develop novel materials and strategies to combat biofilms. However, most of the reviews on anti-biofilms published in recent years are based on specific fields or materials. Microorganisms are ubiquitous, except in the context of medical and health issues; however, biofilms exert detrimental effects on the advancement and progress of various fields. Therefore, this review aims to provide a comprehensive summary of effective strategies and methodologies applicable across all industries. Firstly, the process of biofilms formation was introduced to enhance our comprehension of the "enemy". Secondly, strategies to intervene in the important links of biofilms formation were discussed, taking timely action during the early weak stages of the "enemy". Thirdly, treatment strategies for mature biofilms were summarized to deal with biofilms that break through the defense line. Finally, several substances with antibacterial properties were presented. The review concludes with the standpoint of the author about potential developments of anti-biofilms strategies. This review may help researchers quickly understand the research progress and challenges in the field of anti-biofilms to design more efficient methods and strategies to combat biofilms.
Collapse
Affiliation(s)
- Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Xiaoxiao Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Conglin Guo
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuechen Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| |
Collapse
|
11
|
Nandha MC, Shukla RM. Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Front Microbiol 2023; 14:1274636. [PMID: 37808281 PMCID: PMC10552159 DOI: 10.3389/fmicb.2023.1274636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Probiotics are known for their health-promoting properties and are recognized as beneficial microorganisms. The current investigation delves into the isolation and comprehensive in vitro characterization of lactic acid bacteria (LAB) obtained from the Indian-origin Theobroma cacao L. Forastero variety to assess their potential as probiotic candidates. Eleven LAB isolates were obtained, and among them, five exhibited classical LAB traits. These five isolates underwent rigorous in vitro characterization to evaluate their suitability as probiotics. The assessments included resilience against acid and bile salts, which are crucial for probiotic viability. Additionally, the isolates were subjected to simulated gastric and pancreatic fluids and lysozyme exposure to assess their survival rates. Auto- aggregation, co-aggregation, hydrophobicity, and exopolysaccharide production were also examined. The inhibitory potential of α-glucosidase, an enzyme related to glucose metabolism, was measured, and antioxidant activity was evaluated using DPPH and ABTS assays. A safety assessment was conducted to confirm the non-pathogenic nature of the isolates. Among the five isolates, CR2 emerged as a standout candidate with maximal bile salt hydrolase activity, phenol resistance, and lysozyme resistance. CR2 and CYF3 exhibited notable survival rates under simulated conditions. The isolates displayed variable degrees of auto-aggregation, co-aggregation, and hydrophobicity. CR2 exhibited the highest exopolysaccharide production (0.66 mg/mL), suggesting diverse applications in the food industry. CR2 also demonstrated the highest inhibition rate against α-glucosidase (56.55%) and substantial antioxidant activity (79.62% DPPH, 83.45% ABTS). Safety assessment confirmed the non- pathogenic nature of the isolates. Molecular characterization identified CR2 as Lactococcus lactis subsp. lactis and CYF3 as Limnosilactobacillus fermentum. Both strains exhibited commendable probiotic and technological attributes, positioning them as promising candidates for functional foods and beyond. This study provides valuable insights into the in vitro characterization of LAB isolated from Indian Theobroma cacao L., highlighting their potential as probiotic candidates with advantageous traits, including survival in hostile conditions, beneficial enzymatic activities, bioactivity, and other essential attributes.
Collapse
Affiliation(s)
- Mausamy C. Nandha
- Department of Microbiology and Biotechnology, School of Science, Gujarat University, Ahmedabad, India
| | - Rachana M. Shukla
- Department of Microbiology, Gandhinagar Institute of Technology, Gandhinagar, India
| |
Collapse
|
12
|
Chomová N, Pavloková S, Sondorová M, Mudroňová D, Fečkaninová A, Popelka P, Koščová J, Žitňan R, Franc A. Development and evaluation of a fish feed mixture containing the probiotic Lactiplantibacillus plantarum prepared using an innovative pellet coating method. Front Vet Sci 2023; 10:1196884. [PMID: 37377950 PMCID: PMC10291687 DOI: 10.3389/fvets.2023.1196884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Due to the intensification of fish farming and the associated spread of antimicrobial resistance among animals and humans, it is necessary to discover new alternatives in the therapy and prophylaxis of diseases. Probiotics appear to be promising candidates because of their ability to stimulate immune responses and suppress the growth of pathogens. Methods The aim of this study was to prepare fish feed mixtures with various compositions and, based on their physical characteristics (sphericity, flow rate, density, hardness, friability, and loss on drying), choose the most suitable one for coating with the selected probiotic strain Lactobacillus plantarum R2 Biocenol™ CCM 8674 (new nom. Lactiplantibacillus plantarum). The probiotic strain was examined through sequence analysis for the presence of plantaricin- related genes. An invented coating technology based on a dry coating with colloidal silica followed by starch hydrogel containing L. plantarum was applied to pellets and tested for the viability of probiotics during an 11-month period at different temperatures (4°C and 22°C). The release kinetics of probiotics in artificial gastric juice and in water (pH = 2 and pH = 7) were also determined. Chemical and nutritional analyses were conducted for comparison of the quality of the control and coated pellets. Results and discussion The results showed a gradual and sufficient release of probiotics for a 24-hour period, from 104 CFU at 10 mi up to 106 at the end of measurement in both environments. The number of living probiotic bacteria was stable during the whole storage period at 4°C (108), and no significant decrease in living probiotic bacteria was observed. Sanger sequencing revealed the presence of plantaricin A and plantaricin EF. Chemical analysis revealed an increase in multiple nutrients compared to the uncoated cores. These findings disclose that the invented coating method with a selected probiotic strain improved nutrient composition and did not worsen any of the physical characteristics of pellets. Applied probiotics are also gradually released into the environment and have a high survival rate when stored at 4°C for a long period of time. The outputs of this study confirm the potential of prepared and tested probiotic fish mixtures for future use in in vivo experiments and in fish farms for the prevention of infectious diseases.
Collapse
Affiliation(s)
- Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Miriam Sondorová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Rudolf Žitňan
- Research Institute for Animal Production, National Agricultural and Food Center, Nitra, Slovakia
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| |
Collapse
|
13
|
Effect of different drying methods on the functional properties of probiotics encapsulated using prebiotic substances. Appl Microbiol Biotechnol 2023; 107:1575-1588. [PMID: 36729228 DOI: 10.1007/s00253-023-12398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Probiotics and prebiotics together work synergistically as synbiotics and confer various health benefits. Many studies on synbiotic foods only focus on the survival of probiotics but fail to evaluate their functional properties. The impact on functional properties should be explored to better understand its therapeutic efficacy. In this work, probiotics (Lactiplantibacillus plantarum NCIM 2083) were encapsulated with prebiotics (fructooligosaccharide + whey protein + maltodextrin) using spray-drying (SD), freeze-drying (FD), spray-freeze-drying (SFD), and refractance window-drying (RWD) techniques. Aggregation, intestinal adhesion, antagonistic activity, and bile salt hydrolase (BSH) activity of probiotics were studied before and after the encapsulation process. The SFD probiotics showed better aggregation ability (79% at 24-h incubation), on par with free cells (FC) (81% at 24-h incubation). The co-aggregation ability of encapsulated probiotics has drastic variations with each pathogenic strain. The adhesion ability of probiotics in chicken intestinal mucus was assessed by the crystal violet method, indicating no significant variations between FC and SFD probiotics. Also, encapsulated probiotics exhibit antagonistic activity (zone of inhibition in mm) against gut pathogens E. coli (11.33 to 17.34), S. faecalis (8.83 to 15.32), L. monocytogenes (13.67 to 18), S. boydii (12.17 to 15.5), and S. typhi (2.17 to 6.86). Overall, these studies confirm the significance and impact of various drying techniques on the functionality of encapsulated probiotics in synbiotic powders. KEY POINTS: • Understanding the relevance of processing effects on the functionality of probiotics. • Spray-freeze-dried probiotics showed superior functional properties. • The encapsulation process had no significant impact on bile salt hydrolase activity.
Collapse
|
14
|
Mirzabekyan S, Harutyunyan N, Manvelyan A, Malkhasyan L, Balayan M, Miralimova S, Chikindas ML, Chistyakov V, Pepoyan A. Fish Probiotics: Cell Surface Properties of Fish Intestinal Lactobacilli and Escherichia coli. Microorganisms 2023; 11:microorganisms11030595. [PMID: 36985169 PMCID: PMC10052099 DOI: 10.3390/microorganisms11030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
The properties of intestinal bacteria/probiotics, such as cell surface hydrophobicity (CSH), auto-aggregation, and biofilm formation ability, play an important role in shaping the relationship between the bacteria and the host. The current study aimed to investigate the cell surface properties of fish intestinal bacteria and probiotics. Microbial adhesion to hydrocarbons was tested according to Kos and coauthors. The aggregation abilities of the investigated strains were studied as described by Collado and coauthors. The ability of bacterial isolates to form a biofilm was determined by performing a qualitative analysis using crystal violet staining based on the attachment of bacteria to polystyrene. These studies prove that bacterial cell surface hydrophobicity (CSH) is associated with the growth medium, and the effect of the growth medium on CSH is species-specific and likely also strain-specific. Isolates of intestinal lactobacilli from fish (Salmo ischchan) differed from isolates of non-fish/shrimp origin in the relationship between auto-aggregation and biofilm formation. Average CSH levels for fish lactobacilli and E. coli might were lower compared to those of non-fish origin, which may affect the efficiency of non-fish probiotics use in fisheries due to the peculiarities of the hosts’ aquatic lifestyles.
Collapse
Affiliation(s)
- Susanna Mirzabekyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Natalya Harutyunyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Anahit Manvelyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Lilit Malkhasyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Marine Balayan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Shakhlo Miralimova
- Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Michael L. Chikindas
- Health Promoting Natural Laboratory, Rutgers State University, New Brunswick, NJ 08901, USA
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str., 19/1, 119146 Moscow, Russia
| | - Vladimir Chistyakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, Prosp. Stachky 194/1, 344090 Rostov-on-Don, Russia
| | - Astghik Pepoyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
- The International Scientific-Educational Center of the National Academy of Sciences of the Republic of Armenia, Yerevan 0019, Armenia
- Correspondence: or or ; Tel.: +374-91-432490
| |
Collapse
|
15
|
Huligere SS, Chandana Kumari VB, Alqadi T, Kumar S, Cull CA, Amachawadi RG, Ramu R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front Microbiol 2023; 13:1042263. [PMID: 36756202 PMCID: PMC9901530 DOI: 10.3389/fmicb.2022.1042263] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023] Open
Abstract
Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,Raghavendra G. Amachawadi,
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Ramith Ramu,
| |
Collapse
|
16
|
The Use of Natural Methods to Control Foodborne Biofilms. Pathogens 2022; 12:pathogens12010045. [PMID: 36678393 PMCID: PMC9865977 DOI: 10.3390/pathogens12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms.
Collapse
|
17
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
18
|
Development of Bioactive Opuntia ficus-indica Edible Films Containing Probiotics as a Coating for Fresh-Cut Fruit. Polymers (Basel) 2022; 14:polym14225018. [PMID: 36433145 PMCID: PMC9693271 DOI: 10.3390/polym14225018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Bioactive edible films have received more attention in recent years as a method for food preservation with value-added functions. The aim of this study was to develop a bioactive edible film containing mucilage of cactus (Opuntia ficus-indica) and incorporating the probiotic strain Enterococcus faecium FM11-2 as an active component to promote consumer health benefits. Opuntia ficus-indica is rich in nutritional and bioactive compounds and the abundance of this cactus makes it attractive for food applications. Mucilage of Opuntia ficus-indica contained 0.47 ± 0.06 mg/g total sugar, 0.33 ± 0.06 mg AGE/mL phenolic content, 0.14 mg/ mL vitamin C, and possessed 35.51 ± 1.88% DPPH scavenging activity. The edible film that was developed exhibited the following characteristics: thickness of 0.02-0.11 mm, percent moisture content 0.19-0.24%, water solubility 30.66-59.41% and water vapor permeability of 0.15-1.5 g·mm/m2·min·kpa, while the range of the variation depended on the type of plasticizer used (either sorbitol or glycerol). The addition of sorbitol in the film provided the maximum mechanical strength based on the evaluation of tensile strength, Young's modulus and elongation at break (44.71 ± 0.78 MPa, 113.22 ± 0.23 MPa and 39.47 ± 0.61%, respectively). The optimal formulation of the edible film, according to the physicochemical, physical and maintenance of fresh-cut apple slices, contained cactus mucilage, gelatin, glycerol and a probiotic. The incorporation of a probiotic into the cactus film created a bioactive edible film that could provide a health benefit. While improvement is needed to maintain the survival rate of the probiotic, this work presents an exciting method for furthering the study of food preservation with edible films.
Collapse
|
19
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
20
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
21
|
Vasiee A, Falah F, Mortazavi SA. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J Appl Microbiol 2022; 133:3201-3214. [PMID: 35957557 DOI: 10.1111/jam.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
AIMS The aim of this study was evaluating the probiotic potential and anti-biofilm activity of five lactobacilli strains which isolated and identified from an Iranian product. METHODS AND RESULTS Five lactobacilli strains which were isolated from Zabuli yellow kashk, were evaluated for the presence of probiotic properties, such as resistance to low pH, resistance to simulated gastrointestinal conditions, bile salt tolerance, hydrophobicity, auto- and co-aggregation. In addition, antimicrobial susceptibility, adherence to Caco-2 cells (human colon cancer cell line), anti-adhesion activity, ability against biofilm formation, and biofilm degradation of mentioned strains against Pseudomonas aeruginosa PTCC 1707 were assessed. All the strains tested showed acceptable characteristics, but Lactiplantibacillus plantarum TW57-4 appeared of particular interest. Some probiotic properties of this strain were similar and in some cases higher than the commercial probiotic strain Lacticaseibacillus rhamnosus GG (standard sample). Cholesterol assimilation and radical-scavenging activity of Lpb. plantarum TW57-4 were70.2 % and 62.3 %, respectively. The adhesion degree of Lpb. plantarum TW57-4 was 10.6 %. Applying competition and inhibition assay, this strain showed 55.3 % and 62.3 % of competition and inhibition activity in adhesion of P. aeruginosa PTCC 1707 to the intestinal cells, respectively. CONCLUSIONS According to the obtained results, it can be concluded that Lpb. plantarum TW57-4 strain can be used as a promising candidate for in-vivo studies with the aim of developing new probiotic starter cultures. SIGNIFICANCE AND IMPACT OF STUDY The present study furthers our understanding of lactobacilli strains behavior after consumption to establish their beneficial effects.
Collapse
Affiliation(s)
- Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Oliveira GS, Freire HPS, Romano CC, Rezende RP, Evangelista AG, Meneghetti C, Costa LB. Bioprotective potential of lactic acid bacteria and their metabolites against enterotoxigenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849513 DOI: 10.1099/mic.0.001216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli is one of the main pathogens that impacts swine production. Given the need for methods for its control, the in vitro effect of lactic acid bacteria (LAB) and their metabolites against E. coli F4 was evaluated through cell culture and microbiological analysis. The strains Limosilactobacillus fermentum 5.2, Lactiplantibacillus plantarum 6.2, and L. plantarum 7.1 were selected. To evaluate the action of their metabolites, lyophilized cell-free supernatants (CFS) were used. The effect of CFS was evaluated in HT-29 intestinal lineage cells; in inhibiting the growth of the pathogen in agar; and in inhibiting the formation of biofilms. The bioprotective activity of LAB was evaluated via their potential for autoaggregation and coaggregation with E. coli. The CFS did not show cytotoxicity at lower concentrations, except for L. fermentum 5.2 CFS, which is responsible for cell proliferation at doses lower than 10 mg ml-1. The CFS were also not able to inhibit the growth of E. coli F4 in agar; however, the CFS of L. plantarum 7.1 resulted in a significant decrease in biofilm formation at a dose of 40 mg ml-1. Regarding LAB, their direct use showed great potential for autoaggregation and coaggregation in vitro, thus suggesting possible effectiveness in animal organisms, preventing E. coli fixation and proliferation. New in vitro tests are needed to evaluate lower doses of CFS to control biofilms and confirm the bioprotective potential of LAB, and in vivo tests to assess the effect of LAB and their metabolites interacting with animal physiology.
Collapse
Affiliation(s)
- Gabriel Souza Oliveira
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Herbert Pina Silva Freire
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Carla Cristina Romano
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Rachel Passos Rezende
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Alberto Gonçalves Evangelista
- Pontifical Catholic University of Paraná, School of Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil
| | - Camila Meneghetti
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Leandro Batista Costa
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil.,Pontifical Catholic University of Paraná, School of Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil
| |
Collapse
|
23
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf 2022; 21:3346-3375. [PMID: 35762651 DOI: 10.1111/1541-4337.12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023]
Abstract
Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
25
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Formation of Biofilm by Tetragenococcus halophilus Benefited Stress Tolerance and Anti-biofilm Activity Against S. aureus and S. Typhimurium. Front Microbiol 2022; 13:819302. [PMID: 35300476 PMCID: PMC8921937 DOI: 10.3389/fmicb.2022.819302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium (LAB), plays an important role in the production of high-salt fermented foods. Generally, formation of biofilm benefits the fitness of cells when faced with competitive and increasingly hostile fermented environments. In this work, the biofilm-forming capacity of T. halophilus was investigated. The results showed that the optimal conditions for biofilm formation by T. halophilus were at 3–9% salt content, 0–6% ethanol content, pH 7.0, 30°C, and on the surface of stainless steel. Confocal laser scanning microscopy (CLSM) analysis presented a dense and flat biofilm with a thickness of about 24 μm, and higher amounts of live cells were located near the surface of biofilm and more dead cells located at the bottom. Proteins, polysaccharides, extracellular-DNA (eDNA), and humic-like substances were all proved to take part in biofilm formation. Higher basic surface charge, greater hydrophilicity, and lower intracellular lactate dehydrogenase (LDH) activities were detected in T. halophilus grown in biofilms. Atomic force microscopy (AFM) imaging revealed that biofilm cultures of T. halophilus had stronger surface adhesion forces than planktonic cells. Cells in biofilm exhibited higher cell viability under acid stress, ethanol stress, heat stress, and oxidative stress. In addition, T. halophilus biofilms exhibited aggregation activity and anti-biofilm activity against Staphylococcus aureus and Salmonella Typhimurium. Results presented in the study may contribute to enhancing stress tolerance of T. halophilus and utilize their antagonistic activities against foodborne pathogens during the production of fermented foods.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. Biofilm combating in the food industry: Overview, non‐thermal approaches, and mechanisms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- R. Dhivya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - V. C. Rajakrishnapriya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - K. Sruthi
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - D. V. Chidanand
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - C. K. Sunil
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| |
Collapse
|
27
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
28
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|