1
|
Aslan S, Alhraishawi A, Ozturk M. CH 4 production potential of autotrophic nitrification bacteria produced in the submerged nitrification bioreactor in the laboratory and kinetic analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:890-908. [PMID: 38973230 DOI: 10.1080/09603123.2024.2374000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
In this study, CH4 production capacity of nitrification bacteria (NB) obtained from the submerged biofilter in the laboratory was investigated. Biochemical methane potential (BMP) test was carried out with the NB amount of zero (control, CR), 5% (R1), 10% (R2), and 15% (R3) at a temperature of about 37 ± 0.5°C. Compared to the CR, significantly higher cumulative CH4 volume of about 290, 490, and 715 mL were determined in the R1, R2, and R3, respectively. All the applied kinetic models gave good results (R2 ≥0.97), while the Transference Function and First-order models provided the better R2 values. The delay phase (λ) was not observed in the AD process, and CH4 production started immediately on the first day of operation. The predicted k value of 0.133 day-1 was high in CR, while it was approximately between 0.078 and 0.112 day-1 for the higher amount of NB containing BMP units, which indicated that the AD required long reaction time.
Collapse
Affiliation(s)
- Sukru Aslan
- Department of Environmental Engineering, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Ali Alhraishawi
- Graduate School of Natural and Applied Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
- Department of Civil Engineering, College of Engineering, Misan University, Misan, Iraq
| | - Mustafa Ozturk
- Department of Crop and Animal Production, Sivas Vocational School of Higher Education, Sivas Cumhuriyet University, Sivas, Turkiye
| |
Collapse
|
2
|
Rodrigues BCG, de Mello BS, Grangeiro LC, Dussan KJ, Sarti A. The most important technologies and highlights for biogas production worldwide. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:87-108. [PMID: 39186308 DOI: 10.1080/10962247.2024.2393192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Bioenergy or green fuel has been considered the fuel of the future for being a type of renewable energy that contributes to the preservation of the environment as it helps to reduce greenhouse gas emissions. In this way, biogas offers a potential alternative to fossil fuels from anaerobic digestion (AD) bioprocess, which allows the action of several microorganisms in the transformation of substrates into biogas and secondary bioproducts. Over the years, researchers have discussed that low yields in AD are associated with different factors such as type of wastewater, reactor configuration, substrate concentration, temperature, organic loading rates, and biomass concentration inside of the reactor. In this way, to better conduct the AD, studies point to the reactor configuration as one of the factors in the determination of high biogas production for a long period. Understanding and knowing the type of reactor and how the parameters such as biomass accumulation and immobilization, pH, or temperature occur in the system would provide information and can help to improve the bioenergy production in different systems. Moreover, research opportunities about different technologies are essential for the anaerobic digestion of many substrates and the stability of interest production. Thus, this type of scientific study gives a broad overview of the principal systems used in the AD process and information about the circular economy in the production of biogas in the world. Important considerations are highlighted.Implications: The review paper provides information about the scenario of biogas in the world state-of-art and the biogas production from AD. Afterward, an extensive analysis of different and principal types of reactors applied to the AD process, aimed at presenting an overview of the advantages and disadvantages of each configuration intending to gain new insights to improve traditional reactors or propose novel ones. This article enables us to have a perspective about the different technologies available and about new alternatives from an operational point of view for bioenergy from AD, not only in bench studies or pilot scale studies but also at an industrial level. Thus, this type of scientific study gives a broad overview of the principal systems used in the AD process and information about the circular economy in the production of biogas in the world.
Collapse
Affiliation(s)
- Brenda Clara Gomes Rodrigues
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
| | - Bruna Sampaio de Mello
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luana Cardoso Grangeiro
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Kelly Johana Dussan
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), São Paulo, Brazil
| | - Arnaldo Sarti
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Mihi M, Ouhammou B, Aggour M, Daouchi B, Naaim S, El Mers EM, Kousksou T. Modeling and forecasting biogas production from anaerobic digestion process for sustainable resource energy recovery. Heliyon 2024; 10:e38472. [PMID: 39397928 PMCID: PMC11471178 DOI: 10.1016/j.heliyon.2024.e38472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Anaerobic digestion (AD) is one of the most extensively accepted processes for organic waste cleanup, and production of both bioenergy and organic fertilizer. Numerous mathematical models have been conceived for modeling the anaerobic process. In this study, a new modified dynamic mathematical model for the simulation of the biochemical and physicochemical processes involved in the AD process for biogas production was proposed. The model was validated, and a sensitivity analysis based on the OAT approach (one-at-a-time) was carried out as a screening technique to identify the most sensitive parameters. The model was developed by updating the bio-chemical framework and including more details concerning the physico-chemical process. The fraction XP was incorporated into the model as a particulate inert product arising from biomass decay (inoculum). New components were included to distinguish between the substrate and inoculum, and a surface-based kinetics was used to model the substrate disintegration. Additionally, the sulfate reduction process and hydrogen sulfide production have been included. The model was validated using data extracted from the literature. The model's ability to generate accurate predictions was testified using statistical metrics. The model exhibited excellent performance in forecasting the parameters related to the biogas process, with measurements falling within a reasonable error margin. The relative absolute error (rAE) and root mean square error (RMSE) were both less than 5 %, indicating a high ability of the current model in comparison with the literature. Additionally, the scatter index (SI) was below 10 %, and the Nash-Sutcliffe efficiency (NES) approached one, which affirms the model's accuracy and reliability. Finally, the model was applied to investigate the performances of the AD of food waste (FW). The findings of this study support the robustness of the developed model and its applicability as a virtual platform to evaluate the efficiency of the AD treatment and to forecast biogas production and its quality, CO2 emission, and energy potential across various organic solid waste types.
Collapse
Affiliation(s)
- Miriam Mihi
- Faculty of Science of Kenitra, Ibn Tofail University, Morocco
| | - Badr Ouhammou
- National School of Applied Sciences, Chouaib Doukkali University, Morocco
| | - Mohammed Aggour
- Faculty of Science of Kenitra, Ibn Tofail University, Morocco
| | - Brahim Daouchi
- Faculty of Science of Kenitra, Ibn Tofail University, Morocco
| | - Soufyane Naaim
- Faculty of Science of Kenitra, Ibn Tofail University, Morocco
| | | | - Tarik Kousksou
- University of Pau and Pays de l'Adour, E2S UPPA, SIAME, Pau, France
| |
Collapse
|
4
|
Camargo FP, Lourenço V, Rodrigues CV, Sabatini CA, Adorno MAT, Silva EL, Varesche MBA. Bio-CH 4 yield of swine manure and food waste optimized by co-substrate proportions diluted in domestic sewage and pH interactions using the response surface approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119308. [PMID: 37883832 DOI: 10.1016/j.jenvman.2023.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This research aimed at evaluating optimal conditions to obtain value-added metabolites, such as bio-CH4, by co-digesting swine manure and food waste diluted in domestic sewage. The assays were carried out in batches using the statistical methods of Rotational Central Composite Design (RCCD) and Surface Response to evaluate the ranges of food waste (1.30-9.70 gTS.L-1), pH (6.16-7.84) and granular Upflow Anaerobic Sludge Blanket sludge as inoculum (2.32-5.68 gTS.L-1), besides about 250 mL of swine manure in 500 mL Duran flasks. According to the RCCD matrix, bio-CH4 yields among 600.6 ± 60.1 and 2790.0 ± 112.0 mL CH4 gTS.L-1 were observed, besides the maximum CH4 production rate between 0.4 ± 0.5 and 49.7 ± 2.0 mL CH4 h-1 and λ between ≤0.0 and 299.3 ± 4.5 h. In the validation assay, the optimal conditions of 9.98 gTS.L-1 of food waste, pH adjusted to 8.0 and 2.20 gTS.L-1 of inoculum were considered, and the bio-CH4 yield obtained (5640.79 ± 242.98 mL CH4 gTS.L-1 or also 5201.83 ± 224.07 mL CH4 gTVS.L-1) was 11.3 times higher than in assays before optimization (499.3 ± 16.0 mL CH4 gTS.L-1) with 5 gTS.L-1 of food waste, 3 gTS.L-1 of inoculum and pH 7.0. Besides, the results observed about the energetic balance of the control and validation assays highlight the importance of process optimization, as this condition was the only one with energy supply higher than the energy required for its operation, exceeding max consumption sevenfold. Based on the most dominant microorganisms (Methanosaeta, 31.06%) and the metabolic inference of the validation assay, it could be inferred that the acetoclastic methanogenesis was the predominant pathway to CH4 production.
Collapse
Affiliation(s)
- Franciele P Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Vitor Lourenço
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Carolina Aparecida Sabatini
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Effect of Volatile Fatty Acids Accumulation on Biogas Production by Sludge-Feeding Thermophilic Anaerobic Digester and Predicting Process Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sewage sludge represents an important resource for reuse in the wastewater treatment field. Hence, thermophilic anaerobic digestion (TAD) could be an alternative technique to recover renewable resources from sludge. In the TAD biodegradation process, volatile fatty acids (VFAs) are the intermediate products of methanogenesis. However, the higher formation and accumulation of VFAs leads to microbial stress, resulting in acidification and failure of the digester. Therefore, several batch TADs have been investigated to evaluate the VFAs production from sludge and their impact on biogas generation and biodegradation efficiency. Three types of sewage sludges, e.g., primary sludge (PS), secondary sludge (SS), and mixed sludge (MS) were used as substrates to estimate the accumulation of VFAs and yield of methane gas. The system showed the maximum total VFAs accumulation from both PS and MS as 824.68 ± 0.5 mg/L and 236.67 ± 0.5 mg/L, respectively. The dominant VFA accumulation was identified as acetic acid, the main intermediate by-product of methane production. The produced biogas from PS and MS contained 66.75 ± 0.5% and 52.29 ± 0.5% methane, respectively. The high content of methane with PS-feeding digesters was due to the higher accumulation of VFAs (i.e., 824.68 ± 0.5 mg/L) in the TAD. The study also predicted the design parameters of TAD process by fitting the lab-scale experimental data with the well-known first-order kinetic and logistic models. Such predicted design parameters are significantly important before the large-scale application of the TAD process.
Collapse
|
6
|
Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste. ENERGIES 2022. [DOI: 10.3390/en15030834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study evaluates the effects of the varying substrate to inoculum ratios (S:I) of 0.5, 1, 2, 3, 4, 5, and 6 (volatile solids/VS basis) on the kinetics of biogas production during batch mesophilic (35 ± 1 °C) anaerobic digestion (AD) of simulated food waste (FW), using anaerobic digestate as the inoculum. Kinetic parameters during biogas production (scrubbed with NaOH solution) are predicted by the first-order and the modified Gompertz model. The observed average specific biogas yields are in descending order corresponding to the S:I ratios 1, 2, 4, 6, 3, 5, and 0.5, respectively, and the significant effect of the S:I ratio was observed. The tests with the S:I of 1 have the maximum average biogas production rates of 88.56 NmL/gVS.d, whereas tests with the S:I of 6 exhibited the lowest production rates (24.61 NmL/gVS.d). The maximum biogas yields, predicted by the first order and the modified Gompertz model, are 668.65 NmL/gVS (experimental 674.40 ± 29.10 NmL/gVS) and 653.17 NmL/gVS, respectively. The modified Gompertz model has been proven to be suitable in predicting biogas production from FW. VS removal efficiency is greater in higher S:I ratios, with a maximum of 78.80 % at the S:I ratio of 6, supported by the longer incubation time. Moreover, a significant effect of the S:I ratio is seen on kinetics and energy recovery from the AD of FW.
Collapse
|
7
|
Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Valorization of agro-food waste through anaerobic digestion (AD) is gaining prominence as alternative method of waste minimization and renewable energy production. The aim of this study was to identify the key parameters for digester performance subjected to kinetic study and semicontinuous operation. Biochemical methane potential (BMP) tests were conducted in two different operating conditions: without mixing (WM) and continuous mixing (CM). Three different substrates, including food waste (FW), chicken dung (CD), and codigestion of FW and CD (FWCD) were used. Further kinetic evaluation was performed to identify mixing’s effect on kinetic parameters and correlation of the kinetic parameters with digester performance (volatile solid removal (VS%) and specific methane production (SMP)). The four models applied were: modified Gompertz, logistic, first-order, and Monod. It was found that the CM mode revealed higher values of Rm and k as compared to the WM mode, and the trend was consistently observed in the modified Gompertz model. Nonetheless, the logistic model demonstrated good correlation of kinetic parameters with VS% and SMP. In the continuous systems, the optimum OLR was recorded at 4, 5, and 7 g VS/L/d for FW, CD, and FWCD respectively. Therefore, it was deduced that codigestion significantly improved digester performance. Electrical energy generation at the laboratory scale was 0.002, 0.003, and 0.006 kWh for the FW, CD, and FWCD substrates, respectively. Thus, projected electrical energy generation at the on-farm scale was 372 kWh, 382 kWh, and 518 kWh per day, respectively. Hence, the output could be used as a precursor for large-scale digester-system optimization.
Collapse
|
8
|
Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies. ENERGIES 2021. [DOI: 10.3390/en14248373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our study evaluated the specific methane yield (SMY) of selected wetland species subjected to wet and dry anaerobic digestion: Carex elata All. (CE), a mixture (~50/50) of Carex elata All. and Carex acutiformis L. (CA), Phragmites australis (Cav.) Trin. ex Steud. (PA), Typha latifolia L. (TL) and Phalaris arundinacea L. (PAr). Plants were harvested in late September, and therefore, the study material was characterised by high lignin content. The highest lignin content (36.40 ± 1.04% TS) was observed in TL, while the lowest (16.03 ± 1.54% TS) was found in CA. PAr was characterised by the highest hemicellulose content (37.55 ± 1.04% TS), while the lowest (19.22 ± 1.22% TS) was observed in TL. Cellulose content was comparable in almost all plant species studied and ranged from 25.32 ± 1.48% TS to 29.37 ± 0.87% TS, except in PAr (16.90 ± 1.29% TS). The methane production potential differed significantly among species and anaerobic digestion (AD) technologies. The lowest SMY was observed for CE (121 ± 28 NL kgVS−1) with dry fermentation (D–F) technology, while the SMY of CA was the highest for both technologies, 275 ± 3 NL kgVS−1 with wet fermentation (W–F) technology and 228 ± 1 NL kgVS−1 with D–F technology. The results revealed that paludi-biomass could be used as a substrate in both AD technologies; however, biogas production was more effective for W–F. Nonetheless, the higher methane content in the biogas and the lower energy consumption of technological processes for D–F suggest that the final amount of energy remains similar for both technologies. The yield is critical in energy production by the AD of wetland plants; therefore, a promising source of feedstock for biogas production could be biomass from rewetted and previously drained areas, which are usually more productive than natural habitats.
Collapse
|
9
|
Pera AL, Sellaro M, Bianco M, Zanardi G. Effects of a temporary increase in OLR and a simultaneous decrease in HRT on dry anaerobic digestion of OFMSW. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34223801 DOI: 10.1080/09593330.2021.1952312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The effects of the temporary increase of organic loading rate (OLR) combined with the simultaneous decrease of hydraulic retention time (HRT) on the stability of a pilot scale dry anaerobic digester were investigated. The separately collected organic fraction of municipal solid waste in mesophilic conditions (T = 40°C) was treated. The objective of this study was to verify whether it is possible to feed the digester for short periods, about three consecutive weeks, with higher OLRs and lower HRTs than those considered optimal without generating process failure or long-term instability. Starting from stable operation at a daily OLR of 10.0 kg of total volatile solids (TVS) for digester volume and an HRT of 23 d, the reactor was fed with an OLR of 10.8, 11.7 and 12.5 kg TVS m-3 d-1 corresponding to an HRT of 21, 19 and 18 d, respectively. It was observed that after using an OLR of 10.8 and 11.7 kg TVS m-3 d-1 for 3 weeks with satisfying results, it was possible to restore stable operating conditions at an OLR of 10.0 kg TVS m-3 d-1 in a short time. Otherwise, after using an OLR of 12.5 kg TVS m-3 d-1 the anaerobic digestion was deeply unbalanced and quickly failed. In this latter case, however, it was possible to fully recover and restore the stable conditions of the process within two months.
Collapse
|
10
|
Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions. ENERGIES 2021. [DOI: 10.3390/en14020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modified sigmoidal bacteria growth functions (the modified Gompertz, logistic, and Richards) were used to evaluate the methane production process kinetics of agricultural wastes. The mesophilic anaerobic co-digestion experiments were conducted with various agricultural wastes as feedstocks, including cow manure, corn straw, grape leaves, vines, wine residue, strawberry leaves, and tomato leaves. The results showed that anaerobic co-digestion of cow manure and other agricultural wastes increased the methane yields while it prolonged the lag phase time. Compared with the modified Gompertz and logistic models, the modified Richards model obtained higher correlation coefficients and was able to fit experimental data better. The results of this study were expected to determine a suitable model to simulate and study the kinetic process of anaerobic co-digestion with mixed agricultural wastes as feedstocks.
Collapse
|