1
|
Kot AM, Sęk W, Kieliszek M, Błażejak S, Pobiega K, Brzezińska R. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains. Appl Biochem Biotechnol 2024; 196:3274-3316. [PMID: 37646889 PMCID: PMC11166788 DOI: 10.1007/s12010-023-04705-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Due to the growing demand for natural carotenoids, researchers have been searching for strains that are capable of efficient synthesis of these compounds. This study tested 114 red yeast strains collected from various natural environments and food specimens in Poland. The strains were isolated by their ability to produce red or yellow pigments in rich nutrient media. According to potential industrial significance of the carotenoids, both their total production and share of individual carotenoids (β-carotene, γ-carotene, torulene, and torularhodin) were analyzed. The total content of carotenoid pigments in the yeast dry matter ranged from 13.88 to 406.50 µg/g, and the percentages of individual carotenoids highly varied among the strains. Most of the yeast isolates synthesized torulene at the highest amount. Among the studied strains, isolates with a total carotenoid content in biomass greater than 200 µg/g and those containing more than 60% torularhodin were selected for identification (48 strains). The identified strains belonged to six genera: Rhodotorula, Sporidiobolus, Sporobolomyces, Buckleyzyma, Cystofilobasidium, and Erythrobasidium. The largest number of isolates belonged to Rhodotorula babjevae (18), Rhodotorula mucilaginosa (7), Sporidiobolus pararoseus (4), and Rhodotorula glutinis (4).
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Wioletta Sęk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
2
|
Pillaca-Pullo OS, Lopes AM, Estela-Escalante WD. Reusing wastewater from Coffea arabica processing to produce single-cell protein using Candida sorboxylosa: Optimizing of culture conditions. Biotechnol Prog 2024; 40:e3393. [PMID: 37792408 DOI: 10.1002/btpr.3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.
Collapse
Affiliation(s)
- Omar Santiago Pillaca-Pullo
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - André Moreni Lopes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (EEL/USP), Lorena, Brazil
| | - Waldir D Estela-Escalante
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
3
|
Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol 2022; 22:36. [PMID: 36443757 PMCID: PMC9703648 DOI: 10.1186/s12896-022-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.
Collapse
Affiliation(s)
- Wei Zhai
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xintian Li
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xinran Duan
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Changlong Gou
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 Inner Mongolia China
| | - Lixia Wang
- grid.9227.e0000000119573309Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 Jilin Province China
| | - Yunhang Gao
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
4
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa-alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022. [PMID: 36419653 DOI: 10.1016/j.heliyon.2022.e1150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Biotechnologically useful yeast strains have been receiving important attention worldwide for the demand of a wide range of industries. Rhodotorula mucilaginosa is recognized as a biotechnologically important yeast that has gained great interest as a promising platform strain, owing to the diverse substrate appetites, robust stress resistance, and other gratifying features. Due to its attractive properties, R. mucilaginosa has been regarded as an excellent candidate for the biorefinery of carotenoids, lipids, enzymes, and other functional bioproducts by utilizing low-cost agricultural waste materials as substrates. These compounds have aroused great interest as the potential alternative sources of health-promoting food products, substrates for so-called third-generation biodiesel, and dyes or functional ingredients for cosmetics. Furthermore, the use of R. mucilaginosa has rapidly increased as a result of advancements in fermentation for enhanced production of these valuable bioactive compounds. This review focuses on R. mucilaginosa in these advancements and summarizes its potential prospects as alternative sources of natural bioproducts.
Collapse
Affiliation(s)
- Zhiheng Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
5
|
Alahmad Aljammas H, Yazji S, Azizieh A. Optimization of protease production from Rhizomucor miehei Rm4 isolate under solid-state fermentation. J Genet Eng Biotechnol 2022; 20:82. [PMID: 35635657 PMCID: PMC9151939 DOI: 10.1186/s43141-022-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Protease is one of the most important industrial enzymes. The importance of protease bioproduction comes from meeting the increasing demand for this enzyme especially in the cheese industry. Rhizomucor miehei protease is the preferred substitute for the traditional rennet. Solid-state fermentation (SSF) shows promising results in enzyme production. An optimization strategy was applied to optimize the production of Rhizomucor miehei protease in a solid medium. The components of the fermentation medium were screened by using the one-factor-at-a-time (OFAT) approach. The optimization process then was performed by using the response surface methodology (RSM) approach based on five factors (fermentation time, temperature, pH, moisture content, nitrogen concentration) at five levels. Specific milk clotting activity and milk clotting activity/proteolytic activity ratio were considered as response variables in the optimization process. RESULTS Among several combinations, wheat bran was selected as the best substrate. Casein was selected based on preliminary screening of nitrogen sources. The optimal conditions identified by RSM analysis were found to be 81.21 h, 41.11°C, 6.31, 80%, and 1.33% for fermentation time, temperature, pH, moisture content, and casein concentration, respectively. The performed fermentation process under the optimized conditions gave an enzymatic extract with the values of 5.11 mg/mL, 2258.13 Soxhlet unit/mL, 441.90 Soxhlet unit/mg, 1.14 protease unit/mg, and 388.66 for protein content, milk clotting activity, specific clotting activity, specific proteolytic activity, and milk clotting activity/proteolytic activity ratio, respectively. The aforementioned values were close to the predicted values. CONCLUSION The high milk clotting activity and the relatively low proteolytic activity signify higher specificity of the produced enzyme, which is favorable in cheese making. The observed results reveal the efficiency of the applied statistical approaches in obtaining desired values of response variables and minimizing experimental runs, as well as achieving good predictions for response variables.
Collapse
Affiliation(s)
- Houthail Alahmad Aljammas
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| | - Sabah Yazji
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| | - Abdulhakim Azizieh
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| |
Collapse
|
6
|
Li X, Zhang Q, Xu Z, Jiang G, Gan L, Tian Y, Shi B. High-expression and characterization of a novel serine protease from Ornithinibacillus caprae L9 T with eco-friendly applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35996-36012. [PMID: 35060042 DOI: 10.1007/s11356-021-17495-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In the current work, a novel thermophilic serine protease gene (P3862) from Ornithinibacillus caprae L9T was functionally expressed in Bacillus subtilis SCK6. The monomeric enzyme of about 29 kDa was purified to homogeneity with 43.91% of recovery and 2.81-folds of purification. Characterization of the purified protease revealed the optimum activity at pH 7 and 65 °C. The protease exhibited excellent activity and stability in the presence of Na+, Mg2+, Ca2+, ethanediol, n-hexane, Tween-20, Tween-80 and Triton X-100. P3862 displayed favorable caseinolytic activity, moderate keratinolytic activity but no collagenolytic activity. Besides, the homology model of P3862 possessed a globular configuration and characteristic of α/β hydrolase fold, and displayed stable interactions with casein, glycoprotein and keratin rather than collagen. Moreover, the crude enzyme could completely dehair goatskin within 6 h, resulting in decrease in BOD5, COD and TSS loads by 72.86, 74.07, and 73.79%, respectively, as compared with Na2S treatment. Biocatalytic applications revealed that it could effectively remove egg-stains from fabrics at 37 °C for 30 min with low supplementation (300 U/mL), and was able to degrade the feathers of duck and chicken. Overall, these outstanding properties make P3862 valuable in the development of environmentally friendly biotechnologies .
Collapse
Affiliation(s)
- Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education and College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longzhan Gan
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Bi Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
7
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|