1
|
Vens C, van Luijk P, Vogelius RI, El Naqa I, Humbert-Vidan L, von Neubeck C, Gomez-Roman N, Bahn E, Brualla L, Böhlen TT, Ecker S, Koch R, Handeland A, Pereira S, Possenti L, Rancati T, Todor D, Vanderstraeten B, Van Heerden M, Ullrich W, Jackson M, Alber M, Marignol L. A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy. Radiother Oncol 2024; 196:110277. [PMID: 38670264 DOI: 10.1016/j.radonc.2024.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines.
Collapse
Affiliation(s)
- C Vens
- School of Cancer Science, University of Glasgow, Glasgow, UK; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - P van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - R I Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - I El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, United States.
| | - L Humbert-Vidan
- University of Texas MD Anderson Cancer Centre, Houston, TX, United States; Department of MedicalPhysics, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, King's College London, London, UK
| | - C von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - N Gomez-Roman
- Strathclyde Institute of Phrmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - E Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| | - T T Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - S Ecker
- Department of Radiation Oncology, Medical University of Wien, Austria
| | - R Koch
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - A Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - S Pereira
- Neolys Diagnostics, 7 Allée de l'Europe, 67960 Entzheim, France
| | - L Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Todor
- Department of Radiation Oncology, Virginia Commonwealth University, United States
| | - B Vanderstraeten
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium; Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - M Van Heerden
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | | | - M Jackson
- School of Cancer Science, University of Glasgow, Glasgow, UK
| | - M Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|