1
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
DeJesus JE, Wen JJ, Radhakrishnan R. Cytokine Pathways in Cardiac Dysfunction following Burn Injury and Changes in Genome Expression. J Pers Med 2022; 12:jpm12111876. [PMID: 36579591 PMCID: PMC9696755 DOI: 10.3390/jpm12111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
In 2016, an estimated 486,000 individuals sustained burn injuries requiring medical attention. Severe burn injuries lead to a persistent, hyperinflammatory response that may last up to 2 years. The persistent release of inflammatory mediators contributes to end-organ dysfunction and changes in genome expression. Burn-induced cardiac dysfunction may lead to heart failure and changes in cardiac remodeling. Cytokines promote the inflammatory cascade and promulgate mechanisms resulting in cardiac dysfunction. Here, we review the mechanisms by which TNFα, IL-1 beta, IL-6, and IL-10 cause cardiac dysfunction in post-burn injuries. We additionally review changes in the cytokine transcriptome caused by inflammation and burn injuries.
Collapse
|
3
|
Semaphorin 3A: A potential target for prevention and treatment of nickel allergy. Commun Biol 2022; 5:671. [PMID: 35798870 PMCID: PMC9262932 DOI: 10.1038/s42003-022-03641-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Metal allergy is one of the typical immune disorders encountered during the application of dental/medical materials and has a highly complex pathogenic mechanism. Semaphorin 3A (Sema3A), a member of the semaphorin family, is reported to be involved in various immune disorders. However, its role in metal allergy has not been clarified yet. Herein, we show that Sema3A expression was upregulated in nickel (Ni) allergy-induced mouse ear tissue and in NiCl2-stimulated mouse keratinocytes. Moreover, Sema3A regulated tumor necrosis factor-alpha production and mitogen-activated protein kinase activation in keratinocytes. The specific deletion of Sema3A in keratinocytes did not affect immune cell infiltration but reduced edema and ear swelling; it also impeded Th1 responses to cause a slight alleviation in Ni allergy in mice. Our results demonstrate that Sema3A promotes the development of metal allergy and should be explored as a potential target for the prevention and treatment of metal allergy. Semaphorin 3A is upregulated in keratinocytes upon nickel exposure, subsequently promoting Th1 cytokine responses and driving nickel allergic reactions.
Collapse
|
4
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
5
|
Schneider V, Kruse D, de Mattos IB, Zöphel S, Tiltmann KK, Reigl A, Khan S, Funk M, Bodenschatz K, Groeber-Becker F. A 3D In Vitro Model for Burn Wounds: Monitoring of Regeneration on the Epidermal Level. Biomedicines 2021; 9:1153. [PMID: 34572338 PMCID: PMC8466997 DOI: 10.3390/biomedicines9091153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023] Open
Abstract
Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.
Collapse
Affiliation(s)
- Verena Schneider
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- Translational Center for Regenerative Therapies TLC-RT, Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Daniel Kruse
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
| | - Ives Bernardelli de Mattos
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- QRSkin GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Saskia Zöphel
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- Translational Center for Regenerative Therapies TLC-RT, Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Kendra-Kathrin Tiltmann
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- Translational Center for Regenerative Therapies TLC-RT, Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Amelie Reigl
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- Translational Center for Regenerative Therapies TLC-RT, Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Sarah Khan
- Department for Paediatric Surgery, Nuremberg Hospital, Breslauer Straße 201, 90471 Nürnberg, Germany; (S.K.); (K.B.)
| | - Martin Funk
- EVOMEDIS GmbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria;
| | - Karl Bodenschatz
- Department for Paediatric Surgery, Nuremberg Hospital, Breslauer Straße 201, 90471 Nürnberg, Germany; (S.K.); (K.B.)
| | - Florian Groeber-Becker
- Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany; (D.K.); (I.B.d.M.); (S.Z.); (K.-K.T.); (A.R.); (F.G.-B.)
- Translational Center for Regenerative Therapies TLC-RT, Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| |
Collapse
|
6
|
Liu L, Fahy KE, Awoyemi AA, Thapa P, Kelly LE, Chen J, Bihl JC, Cool DR, Chen Y, Rapp CM, Johnson RM, Travers JB. Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:193-201. [PMID: 32434939 PMCID: PMC7342023 DOI: 10.4049/jimmunol.1901393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Thermal burn injuries are an important environmental stressor that can result in considerable morbidity and mortality. The exact mechanism by which an environmental stimulus to skin results in local and systemic effects is an area of active research. One potential mechanism to allow skin keratinocytes to disperse bioactive substances is via microvesicle particles, which are subcellular bodies released directly from cellular membranes. Our previous studies have indicated that thermal burn injury of the skin keratinocyte in vitro results in the production of the lipid mediator platelet-activating factor (PAF). The present studies demonstrate that thermal burn injury to keratinocytes in vitro and human skin explants ex vivo, and mice in vivo generate microvesicle particles. Use of pharmacologic and genetic tools indicates that the optimal release of microvesicles is dependent upon the PAF receptor. Of note, burn injury-stimulated microvesicle particles do not carry appreciable protein cytokines yet contain high levels of PAF. These studies describe a novel mechanism involving microvesicle particles by which a metabolically labile bioactive lipid can travel from cells in response to environmental stimuli.
Collapse
Affiliation(s)
- Langni Liu
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Katherine E Fahy
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Azeezat A Awoyemi
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Pariksha Thapa
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Lisa E Kelly
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Jay Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Ji C Bihl
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - David R Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - R Michael Johnson
- Department of Plastic Surgery, Wright State University, Dayton, OH 45435
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435;
- Department of Dermatology, Wright State University, Dayton, OH 45435; and
- Dayton VA Medical Center, Dayton, OH 45428
| |
Collapse
|
7
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
9
|
Betancourt-Cárdenas PA, Camargo-Caldas NE, Rodríguez-Camacho DF, Lozano-Rivera E, Correa JF. Prescripción del ejercicio físico y sus implicaciones en adultos que han sufrido quemaduras. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n1.66776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La prescripción del ejercicio físico y sus implicaciones en pacientes que han sufrido quemaduras es objeto de estudio en diferentes investigaciones debido al impacto físico, psicológico y social que tiene en las personas.Objetivo. Describir la prescripción de ejercicio físico y sus implicaciones en la población adulta que ha sufrido quemaduras.Materiales y métodos. Se realizó una revisión de tema por medio de exploración de artículos de manera electrónica con filtros de búsqueda en distintas bases de datos con términos DeCS y MeSH.Resultados. Se seleccionaron 11 artículos con intervención de ejercicio físico en fases aguda y crónica. Se incluyeron estrategias sobre la fuerza muscular en cinco de los artículos: tres de resistencia cardiovascular; dos de rango de movimiento, flexibilidad y características tróficas de la piel, y uno de dolor.Conclusiones. Las variables de la prescripción se determinan de acuerdo a las características propias que presenta la persona con quemadura, las cuales se resumen en esta revisión.
Collapse
|
10
|
Wang PW, Wu TH, Pan TL, Chen MH, Goto S, Chen CL. Integrated Proteome and Cytokine Profiles Reveal Ceruloplasmin Eliciting Liver Allograft Tolerance via Antioxidant Cascades. Front Immunol 2018; 9:2216. [PMID: 30319655 PMCID: PMC6168655 DOI: 10.3389/fimmu.2018.02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022] Open
Abstract
Acute rejection (AR) and spontaneous tolerance may occur after allograft orthotopic liver transplants (OLT) performed in certain combinations of donor and recipient rat strains, yet the underlying molecular cascades involved in these conditions remain poorly understood. Comprehensive analysis with proteomic tools revealed that ceruloplasmin was highly expressed during the tolerant period on day 63 post-OLT (POD 63) compared to the rejected samples on POD 14. Meanwhile, cytokine expression profiles implied that the inflammation was significantly stimulated in the AR subjects. Again, protein carbonylation was dramatically upregulated in the rejected subject within the tolerant group. Knockdown of ceruloplasmin would elicit more severe ROS damage, leading to cell death in the presence of H2O2, which induced Nrf2 cascade and the recovery of ceruloplasmin to mediate spontaneous tolerance. In summary, ceruloplasmin may contribute to amending the oxidative stress that eventually causes cell apoptosis and to maintaining the survival of hepatocytes in a drug-free tolerance OLT model.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tung-Ho Wu
- Division of Cardiovascular Surgery, Veterans General Hospital, Kaohsiung, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shigeru Goto
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plast Surg Clin North Am 2018; 26:513-532. [PMID: 30213431 DOI: 10.1016/j.fsc.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of stem cells in regenerative medicine and specifically facial rejuvenation is thought provoking and controversial. Today there is increased emphasis on tissue engineering and regenerative medicine, which translates into a need for a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue is currently recognized as an accessible and abundant source for adult stem cells. Cellular therapies and tissue engineering are still in their infancy, and additional basic science and preclinical studies are needed before cosmetic and reconstructive surgical applications can be routinely undertaken and satisfactory levels of patient safety achieved.
Collapse
Affiliation(s)
- David A Wolf
- Johnson Space Center, Houston, TX, USA; EarthTomorrow, Inc, 1714 Neptune Lane, Houston, TX 77062, USA; Purdue University, West Lafayette, IN, USA
| | - William Beeson
- Facial Plastics, Indianapolis, IN, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Gregory S Keller
- Facial Plastics, Santa Barbara, CA, USA; Facial Plastics, Los Angeles, CA, USA
| | - C William Hanke
- Dermatology, Indianapolis, IN, USA; Laser and Skin Center of Indiana, 13400 North Meridian Street, Suite 290, Carmel, IN 46032, USA; ACGME Micrographic Surgery, Dermatologic Oncology Fellowship Training Program, St. Vincent Hospital, Indianapolis, IN, USA; University of Iowa-Carver College of Medicine, Iowa City, IA, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jill Waibel
- Dermatology, Miami Dermatology and Laser Institute, 7800 Southwest 87th Avenue, Suite B200, Miami, FL 33173, USA; Baptist Hospital of Miami, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matt Leavitt
- Dermatology, Orlando, FL, USA; Advanced Dermatology and Cosmetic Surgery, The Hair Foundation, 260 Lookout Place Suite 103, Maitland, FL 32751, USA; University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA; Nova Southeastern University, 4850 Millenium Boulevard, Orlando, FL 32839, USA
| | - Michael Sacopulos
- Medical Risk Management, Medical Risk Institute, 676 Ohio Street, Terre Haute, IN 47807, USA
| |
Collapse
|
12
|
Stathopoulou MEK, Banti CN, Kourkoumelis N, Hatzidimitriou AG, Kalampounias AG, Hadjikakou SK. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J Inorg Biochem 2018; 181:41-55. [PMID: 29407907 DOI: 10.1016/j.jinorgbio.2018.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023]
Abstract
The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.
Collapse
Affiliation(s)
| | - Christina N Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | - Sotiris K Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
13
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
14
|
Liu Q, Xiao S, Xia Y. TWEAK/Fn14 Activation Participates in Skin Inflammation. Mediators Inflamm 2017; 2017:6746870. [PMID: 29038621 PMCID: PMC5606047 DOI: 10.1155/2017/6746870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) participates in multiple biological activities via binding to its sole receptor-fibroblast growth factor-inducible 14 (Fn14). The TWEAK/Fn14 signaling pathway is activated in skin inflammation and modulates the inflammatory responses of keratinocytes by activating nuclear factor-κB signals and enhancing the production of several cytokines, including interleukins, monocyte chemotactic protein-1, RANTES (regulated on activation, normal T cell expressed and secreted), and interferon gamma-induced protein 10. Mild or transient TWEAK/Fn14 activation contributes to tissular repair and regeneration while excessive or persistent TWEAK/Fn14 signals may lead to severe inflammatory infiltration and tissue damage. TWEAK also regulates cell fate of keratinocytes, involving the function of Fn14-TNF receptor-associated factor-TNF receptor axis. By recruiting inflammatory cells, promoting cytokine production, and regulating cell fate, TWEAK/Fn14 activation plays a pivotal role in the pathogenesis of various skin disorders, such as psoriasis, atopic dermatitis, cutaneous vasculitis, human papillomavirus infection and related skin tumors, and cutaneous autoimmune diseases. Therefore, the TWEAK/Fn14 pathway may be a potential target for the development of novel therapeutics for skin inflammatory diseases.
Collapse
Affiliation(s)
- Qilu Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Chomiski V, Gragnani A, Bonucci J, Correa SAA, Noronha SMRD, Ferreira LM. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients. Acta Cir Bras 2017; 31:505-12. [PMID: 27579877 DOI: 10.1590/s0102-865020160080000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. METHODS Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. RESULTS Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. CONCLUSION There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.
Collapse
Affiliation(s)
- Verônica Chomiski
- Fellow MSc degree, Division of Plastic Surgery, Department of Surgery, Universidade Federal de São Paulo (UNIFESP0, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures, manuscript writing
| | - Alfredo Gragnani
- PhD, Associate Professor, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; manuscript writing; critical revision
| | - Jéssica Bonucci
- Fellow MSc degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures
| | - Silvana Aparecida Alves Correa
- PhD, Postdoctoral degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures, acquisition of data, manuscript writing
| | - Samuel Marcos Ribeiro de Noronha
- PhD, Postdoctoral degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, manuscript writing
| | - Lydia Masako Ferreira
- Head, Full Professor, Division of Plastic Surgery, UNIFESP, Researcher 1A-CNPq, Director Medicine III-CAPES, Sao Paulo-SP, Brazil. Intellectual and scientific content of the study
| |
Collapse
|
16
|
Kim A, Lang T, Xue M, Wijewardana A, Jackson C, Vandervord J. The Role of Th-17 Cells and γδ T-Cells in Modulating the Systemic Inflammatory Response to Severe Burn Injury. Int J Mol Sci 2017; 18:ijms18040758. [PMID: 28368347 PMCID: PMC5412343 DOI: 10.3390/ijms18040758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/26/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Burns are a global public health problem, accounting for an estimated 265,000 deaths annually. Inflammation is essential in supplying the growth factors, cytokines and chemokines needed to recruit T-cells and myeloid cells to the site of a burn injury for wound healing. However, major burns generate a marked pathophysiological inflammatory response through a widespread release of abundant pro-inflammatory mediators that predispose patients to a systemic inflammatory response syndrome, sepsis and multi-organ failure. Recently, there has been promising investigation into the role of γδ T-cells and Th-17 cells in the regulation and propagation of this inflammatory response. This study reviews the current literature on the post-burn immune response.
Collapse
Affiliation(s)
- Albert Kim
- Severe Burns Unit, Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | - Thomas Lang
- Severe Burns Unit, Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, University of Sydney, Sydney NSW 2006, Australia.
| | - Aruna Wijewardana
- Severe Burns Unit, Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | - Chris Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, University of Sydney, Sydney NSW 2006, Australia.
| | - John Vandervord
- Severe Burns Unit, Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| |
Collapse
|
17
|
Lee JH, Moon JH, Lee YJ, Park SY. SIRT1, a Class III Histone Deacetylase, Regulates LPS-Induced Inflammation in Human Keratinocytes and Mediates the Anti-Inflammatory Effects of Hinokitiol. J Invest Dermatol 2017; 137:1257-1266. [PMID: 28257794 DOI: 10.1016/j.jid.2016.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Skin inflammation is a response of the immune system to infection and injury. In this study, we report that hinokitiol, a tropolone-related natural compound that exhibits antioxidant, anti-inflammatory, and anticancer properties in various cell types, can modulate the inflammatory responses of primary human keratinocytes challenged with lipopolysaccharide (LPS). Hinokitiol treatment inhibited LPS-mediated up-regulation of proinflammatory factors including tumor necrosis factor alpha, IL-6, and prostaglandin E2 (PGE2). NF-κB activation and cell migration induced by LPS were blocked in keratinocytes treated with hinokitiol. Sirt1, a class Ⅲ histone deacetylase, was up-regulated by hinokitiol treatment, and the inhibition of Sirt1 activity using a pharmacological inhibitor or genetic silencing blocked hinokitiol-mediated anti-inflammatory effects. Further, hyperactivation of Sirt1 deacetylase using an adenoviral vector also attenuated LPS-induced inflammatory responses. We thus show that hinokitiol can attenuate LPS-mediated proinflammatory signals via Sirt1 histone deacetylase activation in primary human keratinocytes and suggest that hinokitiol may be a potential therapeutic agent in skin inflammatory diseases like psoriasis.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
18
|
Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int J Mol Sci 2017; 18:ijms18010208. [PMID: 28117680 PMCID: PMC5297838 DOI: 10.3390/ijms18010208] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.
Collapse
|
19
|
Yin K, Deuis JR, Lewis RJ, Vetter I. Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Mol Pain 2016; 12:12/0/1744806916665366. [PMID: 27573516 PMCID: PMC5007901 DOI: 10.1177/1744806916665366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022] Open
Abstract
Burn injury is a cause of significant mortality and morbidity worldwide and is frequently associated with severe and long-lasting pain that remains difficult to manage throughout recovery. We characterised a mouse model of burn-induced pain using pharmacological and transcriptomic approaches. Mechanical allodynia elicited by burn injury was partially reversed by meloxicam (5 mg/kg), gabapentin (100 mg/kg) and oxycodone (3 and 10 mg/kg), while thermal allodynia and gait abnormalities were only significantly improved by amitriptyline (3 mg/kg) and oxycodone (10 mg/kg). The need for relatively high opioid doses to elicit analgesia suggested a degree of opioid resistance, similar to that shown clinically in burn patients. We thus assessed the gene expression changes in dorsal root ganglion neurons and pathophysiological mechanisms underpinning burn injury-induced pain using a transcriptomic approach. Burn injury was associated with significantly increased expression of genes associated with axon guidance, neuropeptide signalling, behavioural defence response and extracellular signalling, confirming a mixed neuropathic and inflammatory aetiology. Notably, among the pain-related genes that were upregulated post-injury was the cholecystokinin 2 receptor (Cckbr), a G protein-coupled receptor known as a pain target involved in reducing opioid effectiveness. Indeed, the clinically used cholecystokinin receptor antagonist proglumide (30 mg/kg) was effective at reversing mechanical allodynia, with additional analgesia evident in combination with low-dose oxycodone (1 mg/kg), including significant reversal of thermal allodynia. These findings highlight the complex pathophysiological mechanisms underpinning burn injury-induced pain and suggest that cholecystokinin-2 receptor antagonists may be useful clinically as adjuvants to decrease opioid requirements and improve analgesic management.
Collapse
Affiliation(s)
- Kathleen Yin
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia Pharmacy Australia Centre of Excellence, University of Queensland, Queensland, Australia
| |
Collapse
|
20
|
Martínez-Flores F, Sandoval-Zamora H, Machuca-Rodriguez C, Barrera-López A, García-Cavazos R, Madinaveitia-Villanueva JA. [Skin and tissue bank: Operational model for the recovery and preservation of tissues and skin allografts]. CIR CIR 2015; 84:85-92. [PMID: 26259741 DOI: 10.1016/j.circir.2015.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/16/2014] [Indexed: 11/27/2022]
Abstract
Tissue storage is a medical process that is in the regulation and homogenisation phase in the scientific world. The international standards require the need to ensure safety and efficacy of human allografts such as skin and other tissues. The activities of skin and tissues banks currently involve their recovery, processing, storage and distribution, which are positively correlated with technological and scientific advances present in current biomedical sciences. A description is presented of the operational model of Skin and Tissue Bank at INR as successful case for procurement, recovery and preservation of skin and tissues for therapeutic uses, with high safety and biological quality. The essential and standard guidelines are presented as keystones for a tissue recovery program based on scientific evidence, and within an ethical and legal framework, as well as to propose a model for complete overview of the donation of tissues and organ programs in Mexico. Finally, it concludes with essential proposals for improving the efficacy of transplantation of organs and tissue programs.
Collapse
Affiliation(s)
- Francisco Martínez-Flores
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México.
| | - Hugo Sandoval-Zamora
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México
| | - Catalina Machuca-Rodriguez
- Laboratorio de Terapia Molecular, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, México, D. F., México
| | - Araceli Barrera-López
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México
| | | | | |
Collapse
|
21
|
The immune response in the CNS in Theiler's virus induced demyelinating disease switches from an early adaptive response to a chronic innate-like response. J Neurovirol 2015; 22:66-79. [PMID: 26260496 DOI: 10.1007/s13365-015-0369-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is an important model of the progressive disability caused by irreversible CNS tissue injury, and provides an example of how a CNS pathogen can cause inflammation, demyelination, and neuronal damage. We were interested in which molecules, especially inflammatory mediators, might be upregulated in the CNS throughout TMEV-IDD. We quantitated by a real-time RT-PCR multi-gene system the expression of a pathway-focused panel of genes at 30 and 165 days post infection, characterizing both the early inflammatory and the late neurodegenerative stages of TMEV-IDD. Also, we measured 32 cytokines/chemokines by multiplex Luminex analysis in CSF specimens from early and late TMEV-IDD as well as sham-treated mice. Results indicate that, in the later stage of TMEV-IDD, activation of the innate immune response is most prominent: TLRs, type I IFN response genes, and innate immunity-associated cytokines were highly expressed in late TMEV-IDD compared to sham (p ≤ 0.0001) and early TMEV-IDD (p < 0.05). Conversely, several molecular mediators of adaptive immune response were highly expressed in early TMEV-IDD (all p ≤ 0.001). Protein detection in the CSF was broadly concordant with mRNA abundance of the corresponding gene measured by real-time RT-PCR in the spinal cord, since several cytokines/chemokines were increased in the CSF of TMEV-IDD mice. Results show a clear shift from adaptive to innate immunity from early to late TMEV-IDD, indicating that adaptive and innate immune pathways are likely involved in the development and progression of the disease to different extents. CSF provides an optimal source of biomarkers of CNS neuroinflammation.
Collapse
|
22
|
Huang G, Liang B, Liu G, Liu K, Ding Z. Low dose of glucocorticoid decreases the incidence of complications in severely burned patients by attenuating systemic inflammation. J Crit Care 2014; 30:436.e7-11. [PMID: 25307976 DOI: 10.1016/j.jcrc.2014.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Excessive systemic inflammatory response remains as a major problem underlying severe burns. This study aimed to assess the effect of low-dose glucocorticoid treatment in downregulating systemic inflammation in severely burned patients. METHODS A prospective study from 2001 to 2014 at our hospital was conducted to compare the patients who received low-dose glucocorticoid during the acute phase with those who did not. Patients with burns 70% or greater of their total body surface area were included, and their plasma levels of inflammatory cytokines and clinical outcomes were compared. RESULTS A total of 69 patients were included in this study, with 31 patients receiving glucocorticoid treatment and the others not. Patient demographics including age, burn size, and incidence of inhalation injury were similar in both groups. The incidence of pulmonary infection and stress ulcer (and/or hemorrhage) was 24.2% and 3.0% in the treatment group, respectively, significantly lower than 47.8% and 19.6% of the control group (P < .05). Length of hospital stay was almost 13 days shorter in the treatment group (P < .05), whereas there was no significant difference in the overall mortality, duration of mechanical ventilation, and incidence of sepsis between the 2 groups. The enzyme-linked immunosorbent assay results confirmed that the plasma levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-8 were significantly lower in the treatment group (P < .05). CONCLUSION Low dose of glucocorticoid treatment during the acute phase could reduce the levels of proinflammatory cytokines in severely burned patients and subsequently decrease the incidence of pulmonary infection and stress ulcer, as well as the length of hospital stay.
Collapse
Affiliation(s)
- Guofeng Huang
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Bowei Liang
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Guojun Liu
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Kuisheng Liu
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Zhenqi Ding
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000.
| |
Collapse
|