1
|
Shomali W, Gotlib J. World Health Organization and International Consensus Classification of eosinophilic disorders: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:946-968. [PMID: 38551368 DOI: 10.1002/ajh.27287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of non-hematologic (secondary or reactive) and hematologic (primary or clonal) disorders with the potential for end-organ damage. DIAGNOSIS Hypereosinophilia (HE) has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109/L, and may be associated with tissue damage. After the exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on a combination of various tests. They include morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ hybridization, molecular testing and flow immunophenotyping to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2022 World Health Organization and International Consensus Classification endorse a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions" (MLN-eo-TK), and the MPN subtype, "chronic eosinophilic leukemia" (CEL). Lymphocyte-variant HE is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (e.g., <1.5 × 109/L) without symptoms or signs of organ involvement, a watch and wait approach with close follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Pemigatinib was recently approved for patients with relapsed or refractory FGFR1-rearranged neoplasms. Corticosteroids are first-line therapy for patients with lymphocyte-variant HE and HES. Hydroxyurea and interferon-α have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. Mepolizumab, an interleukin-5 (IL-5) antagonist monoclonal antibody, is approved by the U.S Food and Drug Administration for patients with idiopathic HES. Cytotoxic chemotherapy agents, and hematopoietic stem cell transplantation have been used for aggressive forms of HES and CEL, with outcomes reported for limited numbers of patients. Targeted therapies such as the IL-5 receptor antibody benralizumab, IL-5 monoclonal antibody depemokimab, and various tyrosine kinase inhibitors for MLN-eo-TK, are under active investigation.
Collapse
Affiliation(s)
- William Shomali
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California, USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Saft L, Kvasnicka HM, Boudova L, Gianelli U, Lazzi S, Rozman M. Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase fusion genes: A workshop report with focus on novel entities and a literature review including paediatric cases. Histopathology 2023; 83:829-849. [PMID: 37551450 DOI: 10.1111/his.15021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Myeloid/lymphoid neoplasms with eosinophilia (M/LN-eo) and tyrosine kinase (TK) gene fusions are a rare group of haematopoietic neoplasms with a broad range of clinical and morphological presentations. Paediatric cases have increasingly been recognised. Importantly, not all appear as a chronic myeloid neoplasm and eosinophilia is not always present. In addition, standard cytogenetic and molecular methods may not be sufficient to diagnose M/LN-eo due to cytogenetically cryptic aberrations. Therefore, additional evaluation with fluorescence in-situ hybridisation and other molecular genetic techniques (array-based comparative genomic hybridisation, RNA sequencing) are recommended for the identification of specific TK gene fusions. M/LN-eo with JAK2 and FLT3-rearrangements and ETV6::ABL1 fusion were recently added as a formal member to this category in the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In addition, other less common defined genetic alterations involving TK genes have been described. This study is an update on M/LN-eo with TK gene fusions with focus on novel entities, as illustrated by cases submitted to the Bone Marrow Workshop, organised by the European Bone Marrow Working Group (EBMWG) within the frame of the 21st European Association for Haematopathology congress (EAHP-SH) in Florence 2022. A literature review was performed including paediatric cases of M/LN-eo with TK gene fusions.
Collapse
Affiliation(s)
- Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Ludmila Boudova
- Department of Pathology, Medical Faculty Hospital, Charles University, Pilsen, Czech Republic
| | - Umberto Gianelli
- Università degli Studi di Milano, SC Anatomia Patologica, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Stefano Lazzi
- Department of Biotechnology, Institute of Pathology, University of Siena, Siena, Italy
| | | |
Collapse
|
3
|
Venable ER, Gagnon MF, Pitel BA, Palmer JM, Peterson JF, Baughn LB, Hoppman NL, Greipp PT, Ketterling RP, Patnaik MS, Kelemen K, Xu X. A TRIP11:: FLT3 gene fusion in a patient with myeloid/lymphoid neoplasm with eosinophilia and tyrosine kinase gene fusions: a case report and review of the literature. Cold Spring Harb Mol Case Stud 2023; 9:mcs.a006243. [PMID: 36627146 PMCID: PMC10111796 DOI: 10.1101/mcs.a006243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Myeloid/lymphoid neoplasms with FLT3 gene fusions have recently been included among myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) in the World Health Organization classification and International Consensus Classification. As this entity remains remarkably rare, its scope and phenotypic features are evolving. In this report, we describe a 33-yr-old male with MLN-TK. Conventional chromosome analysis revealed a t(13;14)(q12;q32). Further analysis with mate-pair sequencing (MPseq) confirmed a TRIP11::FLT3 gene fusion. A diagnosis of MLN-TK was rendered. To the best of our knowledge, we report the third case of MLN-TK with a TRIP11::FLT3 gene fusion. In contrast to previously described cases, our case exhibited distinctly mild clinical features and disease behavior, emphasizing the diverse spectrum of MLN-TK at primary presentation and variability in disease course. MLN-TK with FLT3 gene fusions are a genetically defined entity which may be targetable with tyrosine kinase inhibitors with anti-FLT3 activity. Accordingly, from diagnostic and therapeutic viewpoints, genetic testing for FLT3 rearrangements using fluorescence in situ hybridization (FISH) or sequencing-based assays should be pursued for patients with chronic eosinophilia.
Collapse
Affiliation(s)
- Elise R Venable
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marie-France Gagnon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jeanne M Palmer
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Jess F Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patricia T Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Mrinal S Patnaik
- Division of Hematology and Oncology, Department of Medicine Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Katalin Kelemen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology; Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA;
| |
Collapse
|
4
|
Tzankov A, Reichard KK, Hasserjian RP, Arber DA, Orazi A, Wang SA. Updates on eosinophilic disorders. Virchows Arch 2023; 482:85-97. [PMID: 36068374 DOI: 10.1007/s00428-022-03402-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
This review addresses changes and updates in eosinophilic disorders under the International Consensus Classification (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these fusion gene-associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syndrome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation from those of unknown etiology and not attributable to a myeloid neoplasm.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, NY, Rochester, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, IL, Chicago, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sa A Wang
- Department of Hematopathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
5
|
Ryan D, Inamullah O, El Husseini N, Wang E, Selim MA, Feng W. The hypereosinophilic syndrome - an unusual cause of myocarditis and cardioembolic strokes. Am J Med Sci 2022; 364:661-668. [PMID: 35609681 DOI: 10.1016/j.amjms.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023]
Abstract
Hypereosinophilic syndrome is a rare disorder characterized by excessive peripheral eosinophilia and eosinophil associated end-organ damage. Clinical presentations are heterogenous and can involve skin, pulmonary, cardiac and neurologic dysfunction. Eosinophilic myocarditis is a life-threatening complication that increases the risk of cardiac microemboli, which can subsequently lead to embolic strokes. Secondary to changes in blood viscosity, impaired clearance of microemboli, impaired cerebral blood flow, and pro-thrombotic conditions in the setting of hypereosinophilia, infarcts often present in vascular border zone regions. Here we present two cases of cardioembolic strokes involving borderzone regions in the setting of hypereosinophilic syndrome.
Collapse
Affiliation(s)
- Dylan Ryan
- Department of Neurology, Duke University School of Medicine, Durham, NC 27712, United States.
| | - Ovais Inamullah
- Department of Neurology, Duke University School of Medicine, Durham, NC 27712, United States
| | - Nada El Husseini
- Department of Neurology, Duke University School of Medicine, Durham, NC 27712, United States
| | - Endi Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27712, United States
| | - M Angelica Selim
- Department of Pathology, Duke University School of Medicine, Durham, NC 27712, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC 27712, United States
| |
Collapse
|
6
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1358] [Impact Index Per Article: 452.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:129-148. [PMID: 34533850 DOI: 10.1002/ajh.26352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary or clonal) disorders with potential for end-organ damage. DIAGNOSIS Hypereosinophilia (HE) has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109 /L. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ hybridization, next generation sequencing gene assays, and flow immunophenotyping to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2", and the myeloproliferative neoplasm subtype, "chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant HE is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (eg, < 1.5 × 109 /L) without symptoms or signs of organ involvement, a watch and wait approach with close follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant HE and HES. Hydroxyurea and interferon-α have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. Mepolizumab, an interleukin-5 (IL-5) antagonist monoclonal antibody, was recently approved by the US Food and Drug Administration for patients with idiopathic HES. The use of the IL-5 receptor antibody benralizumab, as well as other targeted therapies such as JAK2 and FGFR1 inhibitors, is under active investigation.
Collapse
Affiliation(s)
- William Shomali
- Division of Hematology, Stanford Cancer Institute Stanford University School of Medicine Stanford California USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute Stanford University School of Medicine Stanford California USA
| |
Collapse
|
8
|
Tang G, Tam W, Short NJ, Bose P, Wu D, Hurwitz SN, Bagg A, Rogers HJ, Hsi ED, Quesada AE, Wang W, Miranda RN, Bueso-Ramos CE, Medeiros LJ, Nardi V, Hasserjian RP, Arber DA, Orazi A, Foucar K, Wang SA. Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol 2021; 34:1673-1685. [PMID: 33990705 DOI: 10.1038/s41379-021-00817-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Myeloid/lymphoid neoplasms (M/LN) with 13q12/FLT3 rearrangement have been suggested as candidates for possible inclusion in the World Health Organization classification group of M/LN with eosinophilia (M/LN-eo). We report 12 patients with confirmed FLT3 rearrangement, six with t(12;13)/ETV6-FLT3; one with ins(13;22)/BCR-FLT3; and five with an unconfirmed partner gene located on chromosome bands 2p16, 3q27, 5q15, 5q35, and 7q36. Disease presentations were heterogeneous, including lymphoblastic leukemia/lymphoma, myeloid sarcoma, chronic eosinophilic leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndrome. However, some common features were observed, such as extramedullary involvement (n = 7, 58%), associated eosinophilia in blood, bone marrow, or tissue (n = 8, 67%), multilineage involvement, either as biphasic myeloid/lymphoid neoplasms (n = 2) or mixed phenotype acute leukemia (n = 2). Mutations were detected in 4/8 (50%) patients by next-generation sequencing. None (0/10) had FLT3 or KIT mutations. Eleven patients received disease-based chemotherapy or hypomethylating agents, three received FLT3 inhibitors, and five patients proceeded to hematopoietic stem cell transplant. Together with a review of 16 cases published in the literature, it is apparent that M/LNs with FLT3 rearrangement show disease features reminiscent of members in the category of M/LN-eo with PDGFRA, PDGFRB, FGFR1, and PCM1/JAK2 rearrangement, characterized by a specific gene rearrangement, frequent eosinophilia, multi-lineage involvement and therapeutic benefit from kinase inhibitors.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanie N Hurwitz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Kathryn Foucar
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Pozdnyakova O, Orazi A, Kelemen K, King R, Reichard KK, Craig FE, Quintanilla-Martinez L, Rimsza L, George TI, Horny HP, Wang SA. Myeloid/Lymphoid Neoplasms Associated With Eosinophilia and Rearrangements of PDGFRA, PDGFRB, or FGFR1 or With PCM1-JAK2. Am J Clin Pathol 2021; 155:160-178. [PMID: 33367495 DOI: 10.1093/ajcp/aqaa208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To summarize cases submitted to the 2019 Society for Hematopathology/European Association for Haematopathology Workshop under the category of myeloid/lymphoid neoplasms with eosinophilia and PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2 rearrangements, focusing on recent updates and relevant practice findings. METHODS The cases were summarized according to their respective gene rearrangement to illustrate the spectrum of clinical, laboratory, and histopathology manifestations and to explore the appropriate molecular genetic tests. RESULTS Disease presentations were heterogeneous, including myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDSs), MDS/MPN, acute myeloid leukemia, acute B- or T-lymphoblastic lymphoma/acute lymphoblastic lymphoma (ALL/LBL), or mixed-lineage neoplasms. Frequent extramedullary involvement occurred. Eosinophilia was common but not invariably present. With the advancement of RNA sequencing, cryptic rearrangements were recognized in genes other than PDGFRA. Additional somatic mutations were more frequent in the FGFR1-rearranged cases. Cases with B-ALL presentations differed from Philadelphia-like B-ALL by the presence of an underlying MPN. Cases with FLT3 and ABL1 rearrangements could be potential candidates for future inclusion in this category. CONCLUSIONS Accurate diagnosis and classification of this category of myeloid/lymphoid neoplasms has important therapeutic implications. With the large number of submitted cases, we expand our understanding of these rare neoplasms and improve our ability to diagnose these genetically defined disorders.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, P. L. Foster School of Medicine, El Paso
| | | | - Rebecca King
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | | | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Lisa Rimsza
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | | | - Sa A Wang
- MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Shao H, Wang W, Song J, Tang G, Zhang X, Tang Z, Srivastava J, Shah B, Medeiros LJ, Zhang L. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk Res 2020; 99:106460. [PMID: 33166908 DOI: 10.1016/j.leukres.2020.106460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement are a unique category in the WHO classification, and include cases with rearrangement of PDGFRA, PDGFRB, FGFR1, and PCM1-JAK2. We report three patients presented with eosinophilia and FLT3 rearrangement: the first case with chronic eosinophilic leukemia, not otherwise specified and T-lymphoblastic leukemia/lymphoma; the second case with myeloid sarcoma; and the last case with high-grade myelodysplastic syndrome. The first case showed t(13;14)(q12;q32), which encoded FLT3-TRIP11. The patient was treated with intense chemotherapy and subsequently sorafenib with clinical improvement. Unfortunately, the patient showed persistent residual disease and passed away 9 months after the diagnosis from pneumonia. The other two cases both showed ETV6-FLT3. The second patient was treated with local radiation and systemic chemotherapy including sorafenib and was alive. The third patient was treated with chemotherapy but showed transformation to acute myeloid leukemia and died 15 months after diagnosis. These cases are among a growing number of cases with FLT3 rearrangement that all showed similar clinicopathologic features characterized by myeloproliferative neoplasm with eosinophilia and frequent T lymphoblastic leukemia/lymphoma. Therefore, we propose that the myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement be included in the WHO category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement.
Collapse
MESH Headings
- Abnormal Karyotype
- Aged
- Bone Marrow/pathology
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Disease Progression
- Eosinophilia/complications
- Eosinophilia/genetics
- Eosinophilia/pathology
- Humans
- Hypereosinophilic Syndrome/complications
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Leukemia/classification
- Lymph Nodes/pathology
- Lymphoma/classification
- Male
- Middle Aged
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/complications
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- Sarcoma, Myeloid/complications
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Translocation, Genetic
- World Health Organization
- fms-Like Tyrosine Kinase 3/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Haipeng Shao
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jinming Song
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaya Srivastava
- Adaptive Biotechnologies, 1551 Eastlake Ave E, Ste 200, Seattle, WA, United States
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States.
| |
Collapse
|
11
|
Gerds AT, Gotlib J, Bose P, Deininger MW, Dunbar A, Elshoury A, George TI, Gojo I, Gundabolu K, Hexner E, Hobbs G, Jain T, Jamieson C, Kuykendall AT, McMahon B, Mohan SR, Oehler V, Oh S, Pardanani A, Podoltsev N, Ranheim E, Rein L, Salit R, Snyder DS, Stein BL, Talpaz M, Thota S, Vachhani P, Wadleigh M, Walsh K, Ward DC, Bergman MA, Sundar H. Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1248-1269. [PMID: 32886902 DOI: 10.6004/jnccn.2020.0042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophilic disorders and related syndromes represent a heterogeneous group of neoplastic and nonneoplastic conditions, characterized by more eosinophils in the peripheral blood, and may involve eosinophil-induced organ damage. In the WHO classification of myeloid and lymphoid neoplasms, eosinophilic disorders characterized by dysregulated tyrosine kinase (TK) fusion genes are recognized as a new category termed, myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1 or with PCM1-JAK2. In addition to these aforementioned TK fusion genes, rearrangements involving FLT3 and ABL1 genes have also been described. These new NCCN Guidelines include recommendations for the diagnosis, staging, and treatment of any one of the myeloid/lymphoid neoplasms with eosinophilia (MLN-Eo) and a TK fusion gene included in the 2017 WHO Classification, as well as MLN-Eo and a FLT3 or ABL1 rearrangement.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Vivian Oehler
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katherine Walsh
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
12
|
Yang LH, Zhao Y, Maule J, Rapisardo S, Wang E. T-lymphoblastic lymphoma and acute myeloid leukaemia transformed from myeloid neoplasm with eosinophilia: a divergent evolution of myeloid neoplasm with monosomy 7 but no detectable tyrosine kinase gene rearrangements designated by the WHO Classification. Br J Haematol 2020; 190:e307-e312. [PMID: 32525559 DOI: 10.1111/bjh.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lian-He Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, P. R. of China.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, P. R. of China.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jake Maule
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah Rapisardo
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
13
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
14
|
Zhang H, Paliga A, Hobbs E, Moore S, Olson S, Long N, Dao KHT, Tyner JW. Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud 2018; 4:a003079. [PMID: 30559310 PMCID: PMC6318770 DOI: 10.1101/mcs.a003079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic rearrangements involving FLT3 are rare and only recently have been detected in myeloid/lymphoid neoplasms associated with eosinophilia (MLN-eos) and chronic myeloproliferative disorders. Here we report two cases with FLT3 fusions in patients demonstrating mixed features of myelodysplastic/myeloproliferative neoplasms. In the first case, FLT3 was fused with a new fusion partner MYO18A in a patient with marrow features most consistent with atypical chronic myeloid leukemia; the second case involving ETV6-FLT3 fusion was observed in a case with bone marrow features most consistent with chronic myelomonocytic leukemia. Notably, we observed that samples from both patients demonstrated FLT3 inhibitor (quizartinib and sorafenib) sensitivity in ex vivo drug screening assay.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Aleksandra Paliga
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Evie Hobbs
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Stephen Moore
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Susan Olson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Nicola Long
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Kim-Hien T Dao
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| |
Collapse
|
15
|
Gotlib J. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management. Am J Hematol 2017; 92:1243-1259. [PMID: 29044676 DOI: 10.1002/ajh.24880] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
DISEASE OVERVIEW The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary, clonal) disorders with potential for end-organ damage. DIAGNOSIS Hypereosinophilia has generally been defined as a peripheral blood eosinophil count greater than 1500/mm3 and may be associated with tissue damage. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on a combination of morphologic review of the blood and marrow, standard cytogenetics, fluorescent in situ-hybridization, flow immunocytometry, and T-cell clonality assessment to detect histopathologic or clonal evidence for an acute or chronic myeloid or lymphoproliferative disorder. RISK STRATIFICATION Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes which includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2," and the "MPN subtype, chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant hypereosinophilia is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. RISK-ADAPTED THERAPY The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (e.g., < 1500/mm3 ) without symptoms or signs of organ involvement, a watch and wait approach with close-follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant hypereosinophilia and HES. Hydroxyurea and interferon-alpha have demonstrated efficacy as initial treatment and steroid-refractory cases of HES. In addition to hydroxyurea, second line cytotoxic chemotherapy agents and hematopoietic cell transplant have been used for aggressive forms of HES and CEL with outcomes reported for limited numbers of patients. The use of antibodies against interleukin-5 (IL-5) (mepolizumab), the IL-5 receptor (benralizumab), and CD52 (alemtuzumab), as well as other targets on eosinophils remains an active area of investigation.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute, Stanford, California 94305-5821
| |
Collapse
|