1
|
Thomson AJ, Rehn JA, Heatley SL, Eadie LN, Page EC, Schutz C, McClure BJ, Sutton R, Dalla-Pozza L, Moore AS, Greenwood M, Kotecha RS, Fong CY, Yong ASM, Yeung DT, Breen J, White DL. Reproducible Bioinformatics Analysis Workflows for Detecting IGH Gene Fusions in B-Cell Acute Lymphoblastic Leukaemia Patients. Cancers (Basel) 2023; 15:4731. [PMID: 37835427 PMCID: PMC10571859 DOI: 10.3390/cancers15194731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by diverse genomic alterations, the most frequent being gene fusions detected via transcriptomic analysis (mRNA-seq). Due to its hypervariable nature, gene fusions involving the Immunoglobulin Heavy Chain (IGH) locus can be difficult to detect with standard gene fusion calling algorithms and significant computational resources and analysis times are required. We aimed to optimize a gene fusion calling workflow to achieve best-case sensitivity for IGH gene fusion detection. Using Nextflow, we developed a simplified workflow containing the algorithms FusionCatcher, Arriba, and STAR-Fusion. We analysed samples from 35 patients harbouring IGH fusions (IGH::CRLF2 n = 17, IGH::DUX4 n = 15, IGH::EPOR n = 3) and assessed the detection rates for each caller, before optimizing the parameters to enhance sensitivity for IGH fusions. Initial results showed that FusionCatcher and Arriba outperformed STAR-Fusion (85-89% vs. 29% of IGH fusions reported). We found that extensive filtering in STAR-Fusion hindered IGH reporting. By adjusting specific filtering steps (e.g., read support, fusion fragments per million total reads), we achieved a 94% reporting rate for IGH fusions with STAR-Fusion. This analysis highlights the importance of filtering optimization for IGH gene fusion events, offering alternative workflows for difficult-to-detect high-risk B-ALL subtypes.
Collapse
Affiliation(s)
- Ashlee J. Thomson
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Jacqueline A. Rehn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Susan L. Heatley
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC 3168, Australia
| | - Laura N. Eadie
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Elyse C. Page
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Caitlin Schutz
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Barbara J. McClure
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
| | - Rosemary Sutton
- Molecular Diagnostics, Children’s Cancer Institute, Kensington, NSW 2750, Australia;
| | - Luciano Dalla-Pozza
- The Cancer Centre for Children, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
| | - Andrew S. Moore
- Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD 4101, Australia;
- Child Health Research Centre, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Matthew Greenwood
- Department of Haematology and Transfusion Services, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia;
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| | - Chun Y. Fong
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC 3083, Australia;
| | - Agnes S. M. Yong
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
- Division of Pathology & Laboratory, University of Western Australia Medical School, Perth, WA 6009, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - David T. Yeung
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
- Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - James Breen
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia
- James Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Deborah L. White
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (J.A.R.); (S.L.H.); (L.N.E.); (E.C.P.); (B.J.M.); (A.S.M.Y.); (D.T.Y.); (D.L.W.)
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia;
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC 3168, Australia
- Australian Genomics Health Alliance (AGHA), The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Schieffer KM, Moccia A, Bucknor BA, Stonerock E, Jayaraman V, Jenkins H, McKinney A, Koo SC, Mathew MT, Mardis ER, Lee K, Reshmi SC, Cottrell CE. Expanding the Clinical Utility of Targeted RNA Sequencing Panels beyond Gene Fusions to Complex, Intragenic Structural Rearrangements. Cancers (Basel) 2023; 15:4394. [PMID: 37686670 PMCID: PMC10486946 DOI: 10.3390/cancers15174394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Gene fusions are a form of structural rearrangement well established as driver events in pediatric and adult cancers. The identification of such events holds clinical significance in the refinement, prognostication, and provision of treatment in cancer. Structural rearrangements also extend beyond fusions to include intragenic rearrangements, such as internal tandem duplications (ITDs) or exon-level deletions. These intragenic events have been increasingly implicated as cancer-promoting events. However, the detection of intragenic rearrangements may be challenging to resolve bioinformatically with short-read sequencing technologies and therefore may not be routinely assessed in panel-based testing. Within an academic clinical laboratory, over three years, a total of 608 disease-involved samples (522 hematologic malignancy, 86 solid tumors) underwent clinical testing using Anchored Multiplex PCR (AMP)-based RNA sequencing. Hematologic malignancies were evaluated using a custom Pan-Heme 154 gene panel, while solid tumors were assessed using a custom Pan-Solid 115 gene panel. Gene fusions, ITDs, and intragenic deletions were assessed for diagnostic, prognostic, or therapeutic significance. When considering gene fusions alone, we report an overall diagnostic yield of 36% (37% hematologic malignancy, 41% solid tumors). When including intragenic structural rearrangements, the overall diagnostic yield increased to 48% (48% hematologic malignancy, 45% solid tumor). We demonstrate the clinical utility of reporting structural rearrangements, including gene fusions and intragenic structural rearrangements, using an AMP-based RNA sequencing panel.
Collapse
Affiliation(s)
- Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Moccia
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Brianna A. Bucknor
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Heather Jenkins
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Aimee McKinney
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Selene C. Koo
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Shalini C. Reshmi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Wei S, Talarchek JN, Huang M, Gong Y, Du F, Ehya H, Flieder DB, Patchefsky AS, Wasik MA, Pei J. Cell block-based RNA next generation sequencing for detection of gene fusions in lung adenocarcinoma: An institutional experience. Cytopathology 2023; 34:28-34. [PMID: 36062384 DOI: 10.1111/cyt.13175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Targeted therapy is an important part of the treatment of lung adenocarcinoma. Tests for EGFR mutation, ALK, ROS1, RET and NTRK gene fusions are needed to make a treatment decision. These gene fusions are traditionally detected by fluorescence in situ hybridisation (FISH) or immunohistochemistry. In this study, we investigated whether gene fusions in pulmonary adenocarcinoma could be accurately detected by RNA next-generation sequencing (RNA-NGS) and whether cytology cell blocks could be used effectively for this test. METHODS Archived cytological specimens of lung adenocarcinoma submitted for RNA sequencing between 2019 and 2022 at Fox Chase Cancer Center were retrospectively retrieved. Hybrid capture-based targeted RNA next generation sequencing was used, which covers 507 fusion genes, including ALK, ROS1, RET and NTRKs, irrespective of their partner genes. DNA NGS, FISH and chromosomal microarray analysis were used to confirm the results of the RNA-NGS. RESULTS A total of 129 lung adenocarcinoma cytology specimens were submitted for molecular testing. Eight of 129 (6.2%) cases were excluded from RNA sequencing as their cell blocks contained inadequate numbers of tumour cells. One case (0.8%) failed to yield adequate RNA. The overall success rate was 93% (120/129). Ten of 120 (8.3%) cytology cases were positive for gene fusions, including 7 ALK, 2 ROS1 fusion genes, and 1 RET fusion gene. Twenty-two cell block cases were also tested for ALK fusion genes using FISH. However, 11 of 22 (50%) failed the testing due to inadequate material. CONCLUSIONS Cytology cell blocks can be used as the main source of material for molecular testing for lung cancer. Detection of gene fusions by RNA-based NGS on cell blocks is convenient and reliable in daily practice.
Collapse
Affiliation(s)
- Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Min Huang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Fang Du
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Hormoz Ehya
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Arthur S Patchefsky
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
RNA-Seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq™ 2.0 assay. J Mol Med (Berl) 2022; 100:323-335. [PMID: 35013752 DOI: 10.1007/s00109-021-02149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
Whole transcriptome sequencing (RNA-Seq) has gained prominence for the detection of fusions in solid tumors. Here, we describe the development and validation of an in-house RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, in formalin-fixed paraffin-embedded (FFPE) specimens, using seventy tumor samples with varying fusion status. Conditions were optimized for RNA input of 50 ng, shown to be adequate to call known fusions at as low as 20% neoplastic content. Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. Performance analysis of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility. This clinically developed and validated RNA-Seq-based approach for fusion detection in FPPE samples was shown to be on par if not superior to off-the-shelf commercially offered assays. With gene fusions implicated in a variety of cancer types, offering high-quality, low-cost molecular testing services for FFPE specimens will serve to best benefit the patient and the advancement of precision medicine in molecular oncology. KEY MESSAGES: A custom RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. The assay can be performed with low RNA input and neoplastic content. Performance characteristics of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility.
Collapse
|
5
|
Ramani NS, Chen H, Broaddus R, Lazar AJ, Luthra R, Medeiros LJ, Patel KP, Rashid A, Routbort MJ, Stewart J, Tang Z, Bassett R, Manekia J, Barkoh BA, Dang H, Roy-Chowdhuri S. Utilization of cytology smears improves success rates of RNA-based next-generation sequencing gene fusion assays for clinically relevant predictive biomarkers. Cancer Cytopathol 2021; 129:374-382. [PMID: 33119213 PMCID: PMC12002355 DOI: 10.1002/cncy.22381] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of RNA-based next-generation sequencing (NGS) assays to detect gene fusions for targeted therapy has rapidly become an essential component of comprehensive molecular profiling. For cytology specimens, the cell block (CB) is most commonly used for fusion testing; however, insufficient cellularity and/or suboptimal RNA quality are often limiting factors. In the current study, the authors evaluated the factors affecting RNA fusion testing in cytology and the added value of smears in cases with a suboptimal or inadequate CB. METHODS A 12-month retrospective review was performed to identify cytology cases that were evaluated by a targeted RNA-based NGS assay. Samples were sequenced by targeted amplicon-based NGS for 51 clinically relevant genes on a proprietary platform. Preanalytic factors and NGS quality parameters were correlated with the results of RNA fusion testing. RESULTS The overall success rate of RNA fusion testing was 92%. Of the 146 cases successfully sequenced, 14% had a clinically relevant fusion detected. NGS testing success positively correlated with RNA yield (P = .03) but was independent of the tumor fraction, the tumor size, or the number of slides used for extraction. CB preparations were adequate for testing in 45% cases, but the inclusion of direct smears increased the adequacy rate to 92%. There was no significant difference in testing success rates between smears and CB preparations. CONCLUSIONS The success of RNA-based NGS fusion testing depends on the quality and quantity of RNA extracted. The use of direct smears significantly improves the adequacy of cytologic samples for RNA fusion testing for predictive biomarkers.
Collapse
Affiliation(s)
- Nisha S. Ramani
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Russell Broaddus
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Asif Rashid
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark J. Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Stewart
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roland Bassett
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jawad Manekia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bedia A. Barkoh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hyvan Dang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sinchita Roy-Chowdhuri
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Ramani NS, Patel KP, Routbort MJ, Alvarez H, Broaddus R, Chen H, Rashid A, Lazar A, San Lucas FA, Yao H, Manekia J, Dang H, Barkoh BA, Medeiros LJ, Luthra R, Roy-Chowdhuri S. Factors Impacting Clinically Relevant RNA Fusion Assays Using Next-Generation Sequencing. Arch Pathol Lab Med 2021; 145:1405-1412. [PMID: 33493304 DOI: 10.5858/arpa.2020-0415-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— RNA-based next-generation sequencing (NGS) assays are being used with increasing frequency for comprehensive molecular profiling of solid tumors. OBJECTIVE.— To evaluate factors that might impact clinical assay performance. DESIGN.— A 4-month retrospective review of cases analyzed by a targeted RNA-based NGS assay to detect fusions was performed. RNA extraction was performed from formalin-fixed, paraffin-embedded tissue sections and/or cytology smears of 767 cases, including 493 in-house and 274 outside referral cases. The types of samples included 422 core needle biopsy specimens (55%), 268 resection specimens (35%), and 77 cytology samples (10%). RESULTS.— Successful NGS fusion testing was achieved in 697 specimens (90.9%) and correlated positively with RNA yield (P < .001) and negatively with specimen necrosis (P = .002), decalcification (P < .001), and paraffin block age of more than 2 years (P = .001). Of the 697 cases that were successfully sequenced, 50 (7.2%) had clinically relevant fusions. The testing success rates and fusion detection rates were similar between core needle biopsy and cytology samples. In contrast, RNA fusion testing was often less successful using resection specimens (P = .007). Testing success was independent of the tumor percentage in the specimen, given that at least 20% tumor cellularity was present. CONCLUSIONS.— The success of RNA-based NGS testing is multifactorial and is influenced by RNA quality and quantity. Identification of preanalytical factors affecting RNA quality and yield can improve NGS testing success rates.
Collapse
Affiliation(s)
- Nisha S Ramani
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Keyur P Patel
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Mark J Routbort
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hector Alvarez
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Russell Broaddus
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Hui Chen
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Asif Rashid
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Alex Lazar
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Francis A San Lucas
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hui Yao
- and Bioinformatics and Computational Biology (Yao), The University of Texas MD Anderson Cancer Center, Houston. Broaddus is currently with the Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Jawad Manekia
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hyvan Dang
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Bedia A Barkoh
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - L Jeffrey Medeiros
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Rajyalakshmi Luthra
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Sinchita Roy-Chowdhuri
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| |
Collapse
|
7
|
Biswas A, Rajesh Y, Mitra P, Mandal M. ETV6 gene aberrations in non-haematological malignancies: A review highlighting ETV6 associated fusion genes in solid tumors. Biochim Biophys Acta Rev Cancer 2020; 1874:188389. [PMID: 32659251 DOI: 10.1016/j.bbcan.2020.188389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
ETV6 (translocation-Ets-leukemia virus) gene is a transcriptional repressor mainly involved in haematopoiesis and maintenance of vascular networks and has developed to be a major oncogene with the potential ability of forming fusion partners with many other genes with carcinogenic consequences. ETV6 fusions function primarily by constitutive activation of kinase activity of the fusion partners, modifications in the normal functions of ETV6 transcription factor, loss of function of ETV6 or the partner gene and activation of a proto-oncogene near the site of translocation. The role of ETV6 fusion gene in tumorigenesis has been well-documented and more variedly found in haematological malignancies. However, the role of the ETV6 oncogene in solid tumors has also risen to prominence due to an increasing number of cases being reported with this malignancy. Since, solid tumors can be well-targeted, the diagnosis of this genre of tumors based on ETV6 malignancy is of crucial importance for treatment. This review highlights the important ETV6 associated fusions in solid tumors along with critical insights as to existing and novel means of targeting it. A consolidation of novel therapies such as immune, gene, RNAi, stem cell therapy and protein degradation hitherto unused in the case of ETV6 solid tumor malignancies may open further therapeutic avenues.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Pagani F, Randon G, Guarini V, Raimondi A, Prisciandaro M, Lobefaro R, Di Bartolomeo M, Sozzi G, de Braud F, Gasparini P, Pietrantonio F. The Landscape of Actionable Gene Fusions in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20215319. [PMID: 31731495 PMCID: PMC6861915 DOI: 10.3390/ijms20215319] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
The treatment scenario of metastatic colorectal cancer (mCRC) has been rapidly enriched with new chemotherapy combinations and biological agents that lead to a remarkable improvement in patients’ outcome. Kinase gene fusions account for less than 1% of mCRC overall but are enriched in patients with high microsatellite instability, RAS/BRAF wild-type colorectal cancer. mCRC patients harboring such alterations show a poor prognosis with standard treatments that could be reversed by adopting novel therapeutic strategies. Moving forward to a positive selection of mCRC patients suitable for targeted therapy in the era of personalized medicine, actionable gene fusions, although rare, represent a peculiar opportunity to disrupt a tumor alteration to achieve therapeutic goal. Here we summarize the current knowledge on potentially actionable gene fusions in colorectal cancer available from retrospective experiences and promising preliminary results of new basket trials.
Collapse
Affiliation(s)
- Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Vincenzo Guarini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
| | - Gabriella Sozzi
- Unit of Molecular Cytogenetics, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (G.S.); (P.G.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Patrizia Gasparini
- Unit of Molecular Cytogenetics, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (G.S.); (P.G.)
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (F.P.); (G.R.); (V.G.); (A.R.); (M.P.); (R.L.); (M.D.B.); (F.d.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|