1
|
Chantre-justino M, Silvestre RT, De Castro TL, Luz E, Pinheiro RDCES, Caruso A, Lopes ACDS, Meohas W, Alves G, Ornellas MHF. Genetic profiling of osteosarcoma in an adolescent using a next‑generation sequencing panel and Sanger sequencing: A case report and review of the literature. Biomed Rep 2025; 22:42. [PMID: 39810900 PMCID: PMC11729137 DOI: 10.3892/br.2025.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies. The present study described a case of an adolescent patient (16-years-old) who was diagnosed with conventional central OS in the right distal femur without the evidence of pulmonary metastases; the patient was treated with surgery and adjuvant chemotherapy. Genetic alterations in resected tumor tissue were investigated via next-generation sequencing (NGS) technology using a targeted NGS panel. Sanger sequencing was also performed to investigate somatic and germline TP53 mutations (exons 4-8). NGS analysis revealed an intratumor heterogeneity signature in OS tumor, including several single nucleotide variants identified in genes encoding tyrosine kinase proteins. No PCR products for TP53 exon 5 were detected in the tumor sample by PCR analysis prior to Sanger sequencing, suggesting a significant deletion in this exon. Sanger sequencing analysis revealed the missense variant TP53 c.712T>A (p.Cys238Ser) in tumor tissue sample, thus reinforcing the role of TP53 somatic mutations in OS development. Additionally, the TP53 c.215C>G (p.Pro72Arg) germline missense variant was identified in the peripheral blood sample. In conclusion, the findings provided new information on genetic aspects that may contribute to OS development, especially in pediatric patients.
Collapse
Affiliation(s)
- Mariana Chantre-justino
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafaele Tavares Silvestre
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Thiago Luz De Castro
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Eliane Luz
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafael De Castro E Silva Pinheiro
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Anabela Caruso
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Ana Cristina De Sá Lopes
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Walter Meohas
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
2
|
Suehara Y, Kitada R, Kamio S, Ogura K, Iwata S, Kobayashi E, Kawai A, Khosaka S. Analysis of cancer multigene panel testing for osteosarcoma in pediatric and adults using the center for cancer genomics and advanced therapeutics database in Japan. J Orthop Sci 2024:S0949-2658(24)00209-4. [PMID: 39562182 DOI: 10.1016/j.jos.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Despite advances in multimodal chemotherapy, prognosis for metastatic or recurrent OS remains poor. Next-generation sequencing (NGS) can uncover new therapeutic options by identifying potentially targetable alterations. This study analyzed NGS data from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database in Japan, comparing findings with the Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) data from the United States. METHODS We sequenced tumor and/or germline DNA from 223 high-grade OS samples using the FoundationOne® CDx or OncoGuideTM NCC Oncopanel System, and the FoundationOne® Liquid CDx for multigene panel testing (2019-2023). Genomic alterations were interpreted using the Cancer Knowledge Database (CKDB), with potentially actionable genetic events categorized into A-F levels. RESULTS Analysis of 223 high-grade OS samples revealed 1684 somatic mutations in 167 genes and 1114 copy number alterations in 89 genes. Potentially actionable alterations were identified in 94 patients (42.2 %) at CKDB Levels A-C. These included 2 cases with NTRK fusions (0.9 %; Level A), one case with TMB-high (0.4 %; Level A), 3 with ERBB amplifications (1.3 %; Level B), and 88 cases (39.5 %) with alterations such as CDK4 amplification, PTEN deletion/mutation, and others (Level C). Co-occurring amplifications of KIT, KDR, and PDGFRA at the 4q12 locus were found in 8 cases (3.6 %), while VEGFA and CCND3 co-amplifications at the 6p12-21 locus were seen in 33 cases (14.8 %). These gene amplifications, also reported in US studies, are targetable by multi-kinase inhibitors, although the C-CAT cohort's profiles differed from US cohorts like MSK-IMPACT. CONCLUSIONS Precision medicine for rare tumors still poses challenges. In this Japanese cohort, 42.2 % of high-grade OSs had potentially actionable alterations per CKDB. Concurrent gene amplifications of KIT, KDR, and PDGFRA at 4q12, and VEGFA and CCND3 at 6p12-21, might offer promising therapeutic options for patients with recurrent/metastatic OS resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Kamio
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Khosaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
3
|
Goto H, Ohtsu T, Ito M, Sagisaka M, Naruto T, Nagai JI, Kitagawa N, Tanaka M, Yanagimachi M, Hiroshima Y, Miyagi Y. A short-term three dimensional culture-based drug sensitivity test is feasible for malignant bone tumors. Hum Cell 2023; 36:2152-2161. [PMID: 37707773 DOI: 10.1007/s13577-023-00982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The feasibility of a short-term, three-dimensional (3D) culture-based drug sensitivity test (DST) for surgically resected malignant bone tumors, including osteosarcoma (OS), was evaluated utilizing two OS cell line (KCS8 or KCS9)-derived xenograft (CDX) models. Twenty-three (KCS8) or 39 (KCS9) of 60 tested drugs were likely effective in OS cells derived from a cell line before xenografting. Fewer drugs (19: KCS8, 26: KCS9) were selected as effective drugs in cells derived from a CDX tumor, although the drug sensitivities of 60 drugs significantly correlated between both types of samples. The drug sensitivity of a CDX tumor was not significantly altered after the depletion of non-tumorous components in the sample. In a surgically resected metastatic tumor obtained from a patient with OS, for whom a cancer genome profiling test detected a pathogenic PIK3CA mutation, DST identified mTOR and AKT inhibitors as effective drugs. Of two CDX and six clinical samples of OS and Ewing's sarcoma, DST identified proteasome inhibitors (bortezomib, carfilzomib) and CEP-701 as potentially effective drugs in common. This unique method of in vitro drug testing using 3D-cell cultures is feasible in surgically resected tissues of metastatic malignant bone tumors.
Collapse
Affiliation(s)
- Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, 232-8555, Japan.
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan.
| | - Takashi Ohtsu
- Division of Advanced Cancer Therapeutics, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Mieko Ito
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Maiko Sagisaka
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun-Ichi Nagai
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, 232-8555, Japan
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukihiko Hiroshima
- Division of Advanced Cancer Therapeutics, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
4
|
Celik B, Cicek K, Leal AF, Tomatsu S. Regulation of Molecular Targets in Osteosarcoma Treatment. Int J Mol Sci 2022; 23:12583. [PMID: 36293439 PMCID: PMC9604206 DOI: 10.3390/ijms232012583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene expression following RNA interference pathways. The determination of target tissue is as important as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic methods that treat patients based on their unique mutations. Several studies showed the effectiveness of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the disease; however, identifying various targets was challenging to understanding disease progression. In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular advancements such as RNA interference approaches. Here, we review potential therapeutic targets for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma patients, and we point out how the small interfering RNA method becomes a promising approach for the unmet challenge.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kader Cicek
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrés Felipe Leal
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
5
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
6
|
Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur J Cancer 2022; 170:196-208. [PMID: 35671543 DOI: 10.1016/j.ejca.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. METHODS Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. RESULTS AND CONCLUSIONS This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6].
Collapse
|